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The quark-hadron transition at vanishing µ
3-flavor PQM model

PQM model contains essential features of QCD (symmetries, anomalies,..)
same universality class as QCD

model Lagrangian:
LPQM = Lquark + Lmeson + Lpol

quark part:

Lquark = q̄
(

i∂/− G
λa

2
(σa + iγ5πa)

)
q

meson part:

Lmeson = Tr(∂µM†∂µM)−m2Tr(M†M)− λ1[Tr(M†M)]2 − λ2Tr(M†M)2

+c
(

det(M) + det(M†)
)

+ Tr[H(M + M†)]

with
M =

∑
a

λa

2
(σa + iπa) ; H =

∑
a

λa

2
ha

Polyakov loop:

Lpol = −q̄γ0A0q − U (`, ¯̀); ` =
1

Nc
TrP exp[i

∫ β

0
dτ A0(x, τ ]
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The quark-hadron transition at vanishing µ
thermodynamic potential in MFT

grand canonical potential:

Ω(T ,µ;σx ,σy , `, ¯̀) = U
(
σx ,σy

)
+ Ωq̄q

(
σx ,σy , `, ¯̀

)
+ U

(
`, ¯̀
)

fermionic part:

Ωq̄q(σx ,σy , `, ¯̀) =

− 2T
∑

f=u,d ,s

∫
d3p

(2π)3

{
ln
[
1 + 3`e−(Ep,f−µf )/T + 3 ¯̀e−2(Ep,f−µf )/T + e−3(Eq,f−µf )/T

]
− 2T

∑
f=u,d ,s

∫
d3p

(2π)3

{
ln
[
1 + 3`e−(Ep,f +µf )/T + 3 ¯̀e−2(Ep,f +µf )/T + e−3(Eq,f +µf )/T

]
in the hadronic phase single quarks and diquarks suppressed!

phase diagram from
∂Ω

∂σx
=
∂Ω

∂σy
=
∂Ω

∂`
=
∂Ω

∂ ¯̀

∣∣∣∣
min

= 0
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QCD Thermodynamics Nf = 2 + 1
lattice comparison @ µ = 0

(pseudo) order parameters: B.-J. Schaefer et al. (2010)

lattice data: Bazavov et al. (2009) mπ ∼ 220 MeV
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QCD Thermodynamics Nf = 2 + 1
EoS B.-J. Schaefer et al. (2010)
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QCD Thermodynamics Nf = 2 + 1
susceptibilities B.-J. Schaefer et al. (2010)
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Including quantum fluctuations
FRG approach C. Wetterich (1993), B.-J. Schaefer et al. (2005)Including quantum fluctuations: FRG approach 

 FRG flow equation (C. Wetterich 93) 
J. Berges,  D. Litim,  B. Friman, J. Pawlowski,  
 B. J. Schafer, J. Wambach, …. 

          start at classical action and include 
quantum fluctuations successively by lowering k 

Regulator function suppresses 
particle propagation with  
momentum Lower than  k 

k-dependent 
full propagator 

k∂kΓk ≡ ∂tΓk =
1
2

∂tRk

Γ(2)
k + Rk

; Γ(2)
k =

δ2Γk

δφδφ

regulator Rk suppresses particle
propagation with momenta lower
than k

Including quantum fluctuations: FRG approach 

 FRG flow equation (C. Wetterich 93) 
J. Berges,  D. Litim,  B. Friman, J. Pawlowski,  
 B. J. Schafer, J. Wambach, …. 

          start at classical action and include 
quantum fluctuations successively by lowering k 

Regulator function suppresses 
particle propagation with  
momentum Lower than  k 

k-dependent 
full propagator 

Ω(T ,µ) = lim
k→0

(
Ωk (T ,µ) = (T/V )Γk

)
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FRG for the PQM model
flow equations B.-J. Schaefer at al. (2007) E. Nakano et al. (2010)

flow equation for Ω with quarks coupled to classical background gluon field

∂kΩk =
k4

12π2

[
3

Eπ
(1 + 2nB(Eπ)) +

1
Eσ

(1 + 2nB(Eσ))− NcNf

Eq

(
1− nq(`, ¯̀)− nq̄(`, ¯̀)

)]
with

E2
π = 1 + 2Ω′k/k2 E2

σ = 1 + 2Ω′k/k2 + 4φ2Ω′′k /k2

E2
q = 1 + Gφ2/k2 Ω′k = ∂Ωk/∂φ etc φ = 〈σ〉

quark densities modified by gluon field

nq(`, ¯̀) =
1− 2 ¯̀exp((Eq − µ)/T ) + ` exp(2(Eq − µ)/T )

1 + 3` exp(2(Eq − µ)/T ) + 3 ¯̀exp(2(Eq − µ)/T ) + exp(3(Eq − µ)/T )

FRG flow equations solved with

∂

∂`
Ω(T ,µ; `, ¯̀) = 0

∂

∂ ¯̀Ω(T ,µ; `, ¯̀) = 0 Ω(T ,µ; `, ¯̀) = Ωk→0(T ,µ; `, ¯̀)− U (`, ¯̀)
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FRG for the PQM model:
results: V. Skokov et al. (2010), T.K. Herbst et al. (2010)

    The order parameter in PQM model in FRG approach 

!  For a physical pion mass, model has crossover transition 
!  Essential modification due to coupling to Polyakov loop 
!  The quantum fluctuations makes transition  smother  

      Mean Field dynamics                                FRG results  

QM 
PQM 

<L> QM 

PQM 

<L> 

       Fluctuations of an order parameter 
      Mean Field dynamics                                FRG results  

!  Deconfinement and chiral transition approximately same 
!  Within FRG broadening of fluctuations  and their 

strength:  essential modifications  compare with MF  

quantum fluctuations make transition smoother!
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1/Nc - expansion
M. Oertel et al. (2000)

the 1/Nc - expansion provides physical picture for smoothening of the transition

Ω = ΩMF + δΩ

1/Nc -diagrams can be summed to all order (’ring sum’)

δΩ =
∑

M

ΩM ; ΩM =
∫

d3q
(2π)3

T
2

∑
iωq

ln(1− 2GΠM (iωq ,~q))

ΩM = −
∫

d3q
(2π)3

∫ ∞
0

dω
π

(1 + 2nB(ω))φM ; φM =
1
2i

ln
1− 2GΠM (ω − iη,~q)
1− 2GΠM (ω + iη,~q)
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1/Nc - expansion
A. Radzhabov et al. (2008), T. Hell et al. (2009)

NF = 2 results

I mesonic fluctuations contribute to pressure in the hadronic phase
I thus contribute to the chiral condensate (〈q̄q〉 = ∂Ω/∂mq)
I Polyakov loop couples dynamically to the chiral condensate
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Resonance gas?
A. Radzhabov (2009)

I mesonic fluctuations contribute to pressure in the hadronic phase
I thus contribute to the chiral condensate (〈q̄q〉 = ∂Ω/∂mq)
I Polyakov loop couples dynamically to the chiral condensate
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Resonance gas?
A. Radzhabov (2009)

A.E. Radzhabov (ISDCT) Nonlocal quark model beyond mean field and QCD phase transition30 August 2009, Tatranská Štrba 4 / 9

I mesonic fluctuations contribute to pressure in the hadronic phase
I thus contribute to the chiral condensate (〈q̄q〉 = ∂Ω/∂mq)
I Polyakov loop couples dynamically to the chiral condensate
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Resonance gas?
A. Radzhabov (2009)
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I mesonic fluctuations contribute to pressure in the hadronic phase
I thus contribute to the chiral condensate (〈q̄q〉 = ∂Ω/∂mq)
I Polyakov loop couples dynamically to the chiral condensate

16.08.2010 | TU-Darmstadt and GSI | J. Wambach | 15



Resonance gas?
A. Radzhabov (2009)

A.E. Radzhabov (ISDCT) Nonlocal quark model beyond mean field and QCD phase transition30 August 2009, Tatranská Štrba 7 / 9
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Resonance gas?
A. Radzhabov (2009)

A.E. Radzhabov (ISDCT) Nonlocal quark model beyond mean field and QCD phase transition30 August 2009, Tatranská Štrba 9 / 9

I mesonic fluctuations contribute to pressure in the hadronic phase
I thus contribute to the chiral condensate (〈q̄q〉 = ∂Ω/∂mq)
I Polyakov loop couples dynamically to the chiral condensate
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Conclusions and outlook
Quark-hadron transition at µ = 0

I QCD-inspired models give good account of the Nf = 2 + 1 lattice EoS
and susceptibilities

I quantum fluctuations smooth out chiral- and deconfinement transition
I understood through additional pressure in the hadronic phase
I ’Hagedorn singularity’ avoided through ’melting’ of resonances above Tc

I is confinement properly accounted for by the Polyakov loop?
I transport coefficients?
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’Quarkyonic’ phase at low T and high µ?
L. McLerran et al. (2007)

L. McLerran et al. (2007) L. McLerran et al. (2009)

large Nc ’conjecture’ PNJL study

2 emmi printed on October 22, 2009
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Fig. 1. The phase diagram in large Nc proposed in [2].

2. From Nc = ∞ to Nc = 3

A novel phase of dense quarks, Quarkyonic Phase, was recently proposed
based on the argument using large Nc counting where Nc denotes number
of colors [2, 3, 4]: in the large Nc limit there are three phases which are
rigorously distinguished using 〈Φ〉 and the baryon number density 〈NB〉.
The quarkyonic phase is characterized by 〈Φ〉 = 0 indicating the system
confined and non-vanishing 〈NB〉 above µB = MB with a baryon mass MB .
The phase structure in large Nc is shown in Figure 1.

A possible deformation of the phase boundaries in Figure 1 together with
the chiral phase transition can be described using a chiral model coupled
to the Polyakov loop [5]. The Nambu–Jona-Lasinio model with Polyakov
loops (PNJL model) has been developed to deal with chiral dynamics and
“confinement” simultaneously [6]. The model describes that only three-
quark states are thermally relevant below the chiral critical temperature,
which is reminiscent of confinement. Figure 2 shows the two transition
lines for Nc = ∞ and for Nc = 3 in the two-flavored PNJL model. In
the large Nc limit assuming that the system is confined, the gap equations
for the order parameters 〈q̄q〉 and 〈Φ〉 become two uncorrelated equations.
Consequently, the quark dynamics carries only a µ dependence and the
Polyakov loop sector does only a T dependence. Finite Nc corrections make
the transition lines bending down. The crossover for deconfinement shows
a weak dependence on µ which is a remnant of the phase structure in large
Nc. One finds that for Nc = 3 deconfinement and chiral crossover lines are
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on top of each other in a wide range of µ. A critical point associated with
chiral symmetry appears around the junction of those crossovers.

The clear separation of the quarkyonic from hadronic phase is lost in
a system with finite Nc. Nevertheless, an abrupt change in the baryon
number density would be interpreted as the quarkyonic transition which
separates meson dominant from baryon dominant regions. In fact, a steep
increase in the baryon number density and the corresponding maximum in
its susceptibility χB are driven by a phase transition from chirally broken
to restored phase in most model-approaches using constituent quarks. One
might then consider the chirally symmetric confined phase as the quarkyonic
phase.

The constituent quarks are however unphysical in confined phase. It is
not obvious to have a realistic description of hadrons from chiral quarks.
In particular, chiral symmetry restoration for baryons must be worked out.
Two alternatives for chirality assignment are known [7] and it remains an
open question which scenario is preferred by nature: (i) in the naive assign-
ment, dynamical chiral symmetry breaking generates a baryon mass which
thus vanishes at the restoration. (ii) in the mirror assignment, dynamical
chiral symmetry breaking generates a mass difference between parity part-
ners and the chiral symmetry restoration does not necessarily dictate the

I ’quarkyonic’ phase is confining but chirally restored (→ parity-doubled hadrons)
I ’triple point’ in the phase diagram
I excludes BCS-like ’color superconductivity’ at moderate density
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’Quarkyonic’ phase at low T and high µ?
L. McLerran et al. (2007)

width of the quarkyonic phase crucially depends on Polyakov loop dynamics!

polynomial potential: Polyakov (1978), Meisinger (1996), Pisarski (2000)

U (`, ¯̀)
T 4 = −b2(T , T0)

2
` ¯̀− b3

6

(
`3 + ¯̀3

)
+

b4

16

(
` ¯̀
)2

with
b2(T , T0) = a0 + a1(T0/T ) + a2(T0/T )2 + a3(T0/T )3

I T0 adjusted to precise lattice data for the ’pure gauge’ transition (T0 = 270 MeV)
I in the presence of dynamial quarks T0 = T0(Nf ,µ) B.-J. Schaefer et al. (2007)

4

Here, we have assumed a RG scheme that minimizes (part
of) the higher-order effects. At leading order the corre-
sponding gauge coupling is given by

α(p) =
α0

1 + α0b(Nf ) ln(p/Λ)
+ O(α2

0) , (10)

with α0 = α(Λ) at some UV-scale Λ. The scale
ΛQCD = Λ exp(−1/(α0b)) corresponds to the Landau
pole of Eq. (10).

The temperature dependence of the coupling is also
governed by Eq. (10) with the identification p ∼ T . This
yields the relation [6]

T0(Nf ) = T̂ e−1/(α0b(Nf )) , (11)

where T̂ and α0 are free parameters. Eq. (11) allows
us to determine the Nf -dependence of the critical tem-

perature T0(Nf ). Analogously to [6] we choose T̂ to be

the τ -scale, T̂ = Tτ = 1.77 GeV. This constitutes a rea-
sonable UV scale for the mean-field model. Then the
pure Yang-Mills input, T0(Nf = 0) = 270 MeV, leads
to α0 = 0.304. In the present work we shall stick to
these values. In addition to the arguments given in [6],
the ratio T0/Tχ in the chiral limit compares well with
that computed in the full two-flavor QCD calculation in
[9]. Table I summarizes the Nf -dependent critical tem-
perature T0 in the Polyakov-loop potential for massless
flavors:

Nf 0 1 2 2 + 1 3

T0 [MeV] 270 240 208 187 178

TABLE I: Critical Polyakov-loop temperature T0 for Nf mass-
less flavors.

Massive flavors lead to suppression factors of the order
T 2

0 /(T 2
0 + m2) in the β-function. For 2 + 1 flavors and

a current strange quark mass ms ≈ 150 MeV we obtain
T0(2 + 1) = 187 MeV. We estimate the systematic error
for T0(Nf ) being of the order +15

−20 MeV related to the
scale matching of the present PQM computation with
the QCD computation in the chiral limit in [9]. Note,
however, that the link to QCD qualitatively improves
the error estimate in comparison to the estimate done in
[6].

As argued in the last section, in addition to the fla-
vor dependence of T0 we introduce a chemical poten-
tial dependence via a µ-dependent running coupling b,
which should push the confinement-deconfinement tran-
sition temperature down close to the chiral transition
line. This can be achieved by defining

T0(Nf , µ) = Tτe−1/(α0b(Nf ,µ)) (12)

with

b(Nf , µ) = b(Nf ) − bµ
µ2

(γ̂ Tτ )2
. (13)

The factor γ̂ is a parameter governing the curvature of
T0(µ) and bµ $ 16

π Nf as in [6]. As for the Nf -dependence
the µ-dependence in Eq. (12) compares well to that found
in QCD [9, 10]. Based on the results there we estimate
the systematic error with 0.7 ! γ̂ ! 1, and we shall
investigate the γ̂-dependence of our results in Sec. V.

B. Grand Potential in Mean-Field Approximation

All thermodynamic properties of the PQM model fol-
low from the grand potential. It is a function of the
temperature and one quark chemical potential since we
consider the SU(2)f -symmetric case in this work and set
µ ≡ µu = µd.

In the mean-field approximation certain quantum and
thermal fluctuations in the path integral representation
of the grand potential are neglected. The mesonic quan-
tum fields are replaced by their corresponding classi-
cal expectation values and only the integration over the
quark loop is performed which is modified by constant
gluon background fields in the PQM model [26]. The
final potential in mean-field approximation reads

ΩMF = Ωq̄q(σ, Φ, Φ̄) + U(σ, 0) + U(Φ, Φ̄) (14)

and consists of the quark contribution including the
Polyakov-loop variables

Ωq̄q = −2NfT

∫
d3p

(2π)3

{
ln

[
1 + 3(Φ + Φ̄e−(Ep−µ)/T )

×e−(Ep−µ)/T + e−3(Ep−µ)/T
]

+ ln
[
1 + 3(Φ̄ + Φe−(Ep+µ)/T )e−(Ep+µ)/T

+ e−3(Ep+µ)/T
]}

, (15)

with the quark/antiquark single-quasiparticle energies

Ep =
√

'p2 + m2
q and the constituent quark mass mq =

hσ. The purely mesonic potential U is given by Eq. (3)
and the effective Polyakov-loop potential U , e.g., by
Eq. (4). Details of the potential derivation can be found
in [6]. The quark contribution involves a divergent vac-
uum term which can be regularized. As shown in [27, 28]
this term is important and modifies the underlying ther-
modynamics. Since this term upgrades the standard
mean-field approximation it is neglected here whereas it
is included in the full RG approach.

The solution of the corresponding equations of motion
are obtained by minimizing the thermodynamic potential
with respect to the three mean fields σ, Φ and Φ̄, i.e.,

∂ΩMF

∂σ
=

∂ΩMF

∂Φ
=

∂ΩMF

∂Φ̄

∣∣∣∣
σ=〈σ〉, Φ=〈Φ〉, Φ̄=〈Φ̄〉

= 0 .

(16)
The solutions to Eq. (16) provide the chiral 〈σ〉 and
Polyakov-loop expectation values 〈Φ〉 and

〈
Φ̄

〉
as func-

tions of the temperature and quark chemical potential.

based on ’one loop’ running of QCD β-function
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’Quarkyonic’ phase at low T and high µ?
B.-J. Schaefer et al. (2010), T.K. Herbst et al. (2010)

T0 = 200 MeV T0(Nf ,µ)
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FIG. 6: Chiral and deconfinement phase diagram for a constant T0 = 208 MeV (left panel) and for T0(µ) with γ̂ = 0.85 (right
panel). The (grey) band corresponds to the width of dΦ/dT at 80% of its peak height. Close to the intersection point of
the chiral transition and the deconfinement transition at mid chemical potential a double peak structure in the temperature
derivative of the Polyakov-loop variables emerges. The (green) dashed line in this region follows the highest peak.
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A similar trend is seen in the entropy, Fig. 8, and
quark number density, Fig. 9, if the µ-corrections are
taken into account. The entropy density decreases for
small temperatures at µ = 290 MeV since the number
of active degrees of freedom decreases when approach-
ing the first-order transition from below. At the transi-
tion the entropy jumps. The bump around T ∼ 90 MeV
(left panel) is a remnant from the smooth chiral crossover
transition. This effect is completely washed out when the
µ-corrections are included (right panel). Similar to the
findings for the pressure these corrections become more
significant at larger chemical potential.

This also appears in the quark number density nq =
−∂Ω/∂µ which is plotted in Fig. 9. For comparison the
corresponding SB-limits (dashed lines) are also shown
in this figure. The quark density approaches the SB-
limit always from below. Without the µ-corrections the
Polyakov loop suppresses the quark densities for chemi-
cal potential larger than the intersection point of the chi-
ral and deconfinement transition in the phase diagram
Fig. 6. With the T0(µ) corrections both transitions coin-

cide over the whole phase diagram and as a consequence
the quark number density approaches much faster the
SB-limit (right panel of Fig. 9).

In Fig. 10 the scaled quark number density (left panel)
and the corresponding scaled quark number susceptibility
(right panel) for three different temperature slices around
the critical endpoint (T CEP, T CEP±5 MeV) as a function
of the quark chemical potential are collected. In this fig-
ure the µ-corrections in T0 are omitted while in Fig. 11
they are taken into account. Due to the chiral critical
endpoint which is a second-order transition the suscepti-
bility diverges with a certain power law [41]. There are
no strong modifications in the structure of the suscepti-
bility divergence if the back-reaction of the matter sector
is taken into account or not. As a consequence it seems
that the size of the critical region around the CEP is not
strongly modified by these fluctuations. The only differ-
ence is that including the µ-corrections the peak height of
the susceptibility is more pronounced towards the CEP.
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A similar trend is seen in the entropy, Fig. 8, and
quark number density, Fig. 9, if the µ-corrections are
taken into account. The entropy density decreases for
small temperatures at µ = 290 MeV since the number
of active degrees of freedom decreases when approach-
ing the first-order transition from below. At the transi-
tion the entropy jumps. The bump around T ∼ 90 MeV
(left panel) is a remnant from the smooth chiral crossover
transition. This effect is completely washed out when the
µ-corrections are included (right panel). Similar to the
findings for the pressure these corrections become more
significant at larger chemical potential.

This also appears in the quark number density nq =
−∂Ω/∂µ which is plotted in Fig. 9. For comparison the
corresponding SB-limits (dashed lines) are also shown
in this figure. The quark density approaches the SB-
limit always from below. Without the µ-corrections the
Polyakov loop suppresses the quark densities for chemi-
cal potential larger than the intersection point of the chi-
ral and deconfinement transition in the phase diagram
Fig. 6. With the T0(µ) corrections both transitions coin-

cide over the whole phase diagram and as a consequence
the quark number density approaches much faster the
SB-limit (right panel of Fig. 9).

In Fig. 10 the scaled quark number density (left panel)
and the corresponding scaled quark number susceptibility
(right panel) for three different temperature slices around
the critical endpoint (T CEP, T CEP±5 MeV) as a function
of the quark chemical potential are collected. In this fig-
ure the µ-corrections in T0 are omitted while in Fig. 11
they are taken into account. Due to the chiral critical
endpoint which is a second-order transition the suscepti-
bility diverges with a certain power law [41]. There are
no strong modifications in the structure of the suscepti-
bility divergence if the back-reaction of the matter sector
is taken into account or not. As a consequence it seems
that the size of the critical region around the CEP is not
strongly modified by these fluctuations. The only differ-
ence is that including the µ-corrections the peak height of
the susceptibility is more pronounced towards the CEP.
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’Quarkyonic’ phase at low T and high µ?
Lessons from the ’statistical model’ K. Fukushima (2010)

results from THERMUS PNJL consistent with stat. model
S. Wheaton et al. (2009) K. Fukushima (2010)2
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FIG. 1. Chemical freeze-out points taken from Refs. [19, 20].
The red and blue (upper and lower) bands represent the re-
gions where the entropy density s and the baryon number
density n, respectively, increase quickly from 0.3 to 0.8 in the
unit of free quark-gluon values, sfree and nfree (see Eq. (1)).

as long as T is vanishingly small, whereas the chiral con-
densate melts at high µB. However, the serious problem
in any model studies is that the model-parameter choice
is largely uncertain. The PNJL and PQM models are not
exceptions. The situation is worse at higher µB because
the lattice-QCD data is unavailable then. It should fa-
tally depends on model assumptions whether the phase
diagram has the critical point(s) and/or quarkyonic mat-
ter or even nothing at all. To make any solid statement, it
is indispensable to impose some constraints on the effec-
tive model. In this work we attempt to deduce the phase
structure from the phenomenological point of view.

Thermodynamics from the Statistical Model Regard-
ing the QCD phase diagram at finite T and µB useful
information is quite limited. Only the chemical freeze-
out points in the heavy-ion collisions are experimental
hints about the phase diagram. Although the freeze-out
points shape an intriguing curve on the µB-T plane, as
plotted by error-bar dots in Fig. 1, one should carefully
interpret it.

The freeze-out points are not the raw experimen-
tal data but an interpretation through the Statistical
Model [19, 20]. In view of the fact that the Statistical
Model is such successful to fit various particle ratios with
µB and T only (µQ, µs, and µc are determined by the ini-
tial condition), it should be legitimate to take the freeze-
out points for experimental data, which in turn validates
the Statistical Model (though why it works lacks for an
explanation from QCD).

Let us proceed further accepting that the Statistical
Model is a valid description of the state of matter un-
til the freeze-out curve or slightly above. It is then a
straightforward application of the Statistical Model to

estimate thermodynamic quantities such as the pressure
p, the entropy density s, the baryon number density n,
etc. We shall utilize the open code THERMUS ver.2.1
to calculate s and n at various T and µB [21].

Figure 1 shows the chemical freeze-out points taken
from Refs. [19, 20], on which s and n are overlaid. For
convenience we normalized these quantities by

sfree =

{
(N2

c − 1) +
7

4
NcNf

}
4π2

45
T 3 +

NcNf

3
µ2

qT ,

nfree = Nf

(
µ3

q

3π2
+

µqT
2

3

)
. (1)

These are the entropy density and the baryon number
density of free massless N2

c − 1 gluons and NcNf quarks.

Here we note that, in drawing Fig. 1, we have intention-
ally relaxed the neutrality conditions for electric charge
and heavy flavors and simply set µQ = µs = µc = 0. We
have done so to make it possible to compare the results
from the Statistical Model to the chiral effective model
approach in later discussions. [We note that one can
force the chiral model to satisfy neutrality but it would
be technically involved [22].] Nevertheless, we would em-
phasize that the neutrality conditions have only minor
effects on the bulk thermodynamics and make only small
differences in any case.

We should mention that we used Eq. (1) with Nc =
Nf = 3. The choice of sfree and nfree is arbitrary and
the following discussions do not rely on this choice, for
we will use sfree and nfree just as common denominators
to display the Statistical Model and the PNJL model
results.

The Statistical Model cannot tell us about the QCD
phase transitions. Still, Fig. 1 is suggestive enough. We
can clearly see the thermodynamic quantities from the
Statistical Model blowing up in a relatively narrow re-
gion. The red and blue (upper and lower) bands indicate
the regions where s/sfree and n/nfree , respectively, grow
quickly from 0.3 to 0.8. In the Hagedorn’s picture [23]
this rapid and simultaneous rise in s and n has a natu-
ral interpretation as the Hagedorn limiting temperature,
above which color degrees of freedom is liberated, i.e.
color deconfinement.

Thermodynamics from the PNJL Model Figure 1 is
useful to have a guess-estimate about the deconfinement
boundary but we can deduce no information about the
chiral property. So, to address the QCD phase transi-
tions, we must find a way to connect the thermodynam-
ics in Fig. 1 to the order parameters 〈ψ̄ψ〉 and Φ. Here
let us go into details of the chiral effective model for that
purpose.

It is essential to adopt the Polyakov-loop augmented
model here because the entropy density should contain
the contribution from gluons which is taken care of by the
Polyakov loop potential. The PNJL model that we use
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FIG. 3. Phase boundaries associated with deconfinement
(blue band) and chiral restoration (red band). Each band
represents a region where the (normalized) order parameter
develops from 0.4 to 0.6.

Phase Diagram Now we get ready to proceed to the
possible QCD phase diagram that is at least consistent
with the Statistical Model outputs in Fig. 1. Using
the standard computational procedure of the mean-field
PNJL model we can solve 〈ψ̄ψ〉 and Φ as functions of
T and µB, from which the phase boundaries of chiral
restoration and deconfinement are located.

Figure 3 shows the phase diagram from the modified
PNJL model. The blue (red) band is a region where the
Polyakov loop (normalized light-quark chiral condensate)
increases from 0.4 to 0.6. In contrast to the old PNJL
model ones, the new results show that the chiral phase
transition is almost parallel to and entirely above the de-
confinement, which agrees with the situation considered
recently in Ref. [15]. We have found the critical point
at (µB, T ) # (45 MeV, 330 MeV), but would not take it
seriously since its location is easily affected [5]. Still, it is
a good news for the critical point search that two QCD
phase transitions stay close to each other, for the exper-
imental signature would be detectable only if the critical
point sits sufficiently near the freeze-out point.

Discussions It is an intriguing observation that the
chiral phase transition occurs later than deconfinement.
This is quite consistent with the Statistical Model as-
sumption. In the Statistical Model the hadron masses
are just the vacuum values and any hadron mass/width
modifications are neglected, which would be a reasonable
treatment only if the chiral phase transition is above the
Hagedorn temperature. Under such a phase structure,
besides, our assumption of neglecting µB-dependence in
the NJL-model parameters turns out to be as acceptable
as the Statistical Model treatment. This can be under-
stood from the fact that the NJL part yields the hadron
masses in the vacuum which are intact in the Statistical

Model.

The failure of the standard PNJL model is attributed
to baryonic degrees of freedom missing in a non-confining
quark description. Hence, one may say that a modifica-
tion made in U [Φ] stems from such crossover between
baryons and quarks, which is presumably parametrized
by the Polyakov loop alone, similarly to the transverse
gluon pressure. It is an important question how our phe-
nomenological input (3) is validated/invalidated from the
first-principle QCD calculation, which will be answered
by future developments in the functional renormalization
group method [3].

Finally, our conclusion is that, if quarkyonic matter is
defined by restored chiral symmetry with confinement, it
is not consistent with the Statistical Model and is unlikely
to occur. However, to complete our analysis it should be
necessary to think of the quarkyonic spiral [14], which is
an important future problem.
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Tf (µB) = a− bµ2
b − cµ4

b

a = 166(2) MeV b = 1.39(16)× 10−4 MeV−1

c = 5.3(21)× 10−11 MeV−3

T0(µ)/T0(0) = 1− (bT0)(µb/T0)2

bT0 = 2.78× 10−2 MeV

bT0 = 2.1× 10−2 MeV (one− loop)

lattice : Tc(µB)/Tc(0) = 1− 6.8× 10−3(µb/T0)2 curvature ∼ 1/3!?
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Conclusions and outlook
Quarkyonic phase?

I do the chiral and deconfinement transition coincide at all T and µ?
I possibly yes→ little room for ’quarkyonic phase’
I depends crucially on T0(Nf ,µ)
I consistency with the statistical model?
→ likely the chemical freeze-out line

is not the phase boundary @ all T and µ
I role of baryons at small T and large µ
I inclusion of quark-diquark correlations
I inhomogeneous phases?
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Inhomogeneous phases of QCD matter
phase diagram (chiral limit: mq = 0)

chiral transition (conventional)
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is the homogeneous phase stable near the CEP?
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Is the homogeneous phase stable near the CEP?
GL analysis (D. Nickel 2009)

GL functional near the CEP: (chiral limit)

ΩGL(T ,µ; M(x)) =
α2

2
M(x)2 +

α4

4

(
M(x)4 + (∇M(x))2)

α6

6

(
M(x)6 + 5(∇M(x))2M(x)2 +

1
2

(∆M(x))2
)

CEP: α2 = α4 = 0,α6 > 0 for inhomogeneous phases α4 < 0

1D inhomogeneities:
exact mass function

M(x) = M(z) =
√
νq sn(qz, ν)
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FIG. 1: Pictorial presentation of the phase diagram in terms of the GL coefficients: The gray domain

corresponds to the homogeneous dynamically broken ground state, the shaded gray to the solitonic ground

state (at least when restricting to one-dimensional modulations in the order parameter), whereas in the

transparent domain the unbroken phase is preferred. Λ is an arbitrary scale. Also stated are various lines

discussed in the text.

α4 < 0: First order phase transition at α4 = −
√

16
3 α2α6 where the broken solution has M2

0 =

−3
4

α4
α6

. The dynamically broken solution continues to exist as a local minimum up to α4 =

−√
4α2α6.

Allowing for inhomogeneous phases we may expect a spatially varying order parameter for α4 < 0

since here small curvatures can lead to a gain in free-energy. Even within the GL approximation the

determination of the ground state is not straightforward as we need to minimize a non-quadratic

functional. Focusing on one-dimensional inhomogeneities, i.e. M(x) = M(z), the solutions to
δ

δM ∆Ω = 0 are actually known from the investigation of one-dimensional models [17, 18]. They

are expressed (up to an arbitrary shift) in terms of the elliptic Jacobi sn-function as

M1D(z) =
√

νq sn(qz, ν) , (12)
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Phase structure in 1+1 dimensions
M.Thies et al. (2004)

exact solutions of 1+1 D fermionic theories for N →∞, Ng2 = const
(Gross-Neveu, NJL, ’t Hooft)

L = ψ̄
(
i∂/−m0

)
ψ +

g2

2

(
ψ̄ψ
)2

I U(N) flavor symmetry
I Z2 chiral symmetry
ψ → γ5ψ ψ̄ψ → −ψ̄ψ

I for N →∞ MF exact

(
−iγ5∂z + γ0M(z)

)
= εαψα

M −m0 = −Ng2
∑

α

nαψ̄αψα

mass function: (m0 = 0)

→ M(z) =
√
νq sn(qz, ν)
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Phase diagram
O. Schnetz et al. (2006)

thermodynamic potential:

Ω(T ,µ) = −T Tr log
(
S−1)

)
+

1
2Ng2λ

∫ λ

0
dz M(z)2

Revised phase diagram of the Gross-Neveu model in the chiral limit
(Schnetz, Urlichs 2003/04)
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NJL Model in 3+1 dimensions
D. Nickel (2009)

I start from the Nf = 2 NJL Lagrangian:

L = q̄
(
i∂/−mq

)
q + Gs

(
(q̄q)2 +

(
q̄iγ5τ aq

)2
)

I allow for spatially inhomogeneous condensates

〈q̄q〉 = S(~x) 〈q̄iγ5τ aq〉 = Pa(~x)
I in mean-field approximation

LMF (x) = q̄
(
i∂/−mq + 2Gs

(
S(x) + iγ5τ3P(x)

))
q − Gs

(
S(x)2 + P(x)2)

M(x) = mq − 2Gs (S(x + iP(x))
I thermodynamic potential: (1D modulations)

Ω(T ,µ) = −2T
V

∑

α

∫

p⊥

ln

(
2 cosh

(
α
√

1 + p2
⊥/α

2 − µ
2T

))
+
∫

V

|M(x)−mq|2
4GsV
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Phase diagram
chiral limit: mq = 0

chiral transition (conventional)
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Phase diagram
chiral limit: mq = 0

chiral transition (new scenario)
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I inhomogeneous:
I inhomogeneous region bounded

by 2nd-order transition lines
I first-order transition line completely

covered by inhomogeneous region
I critical end point→ ’Lifschitz’ point

D. Nickel (2009)

similar conclusions hold in the QM model
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mass and density modulations (T=0)

µ = 307 MeV µ = 308 MeV µ = 342 MeV
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Phase diagram
finite quark mass

two different choices of bare quark mass (mq = 5, 10 MeV)
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FIG. 3: Left: Difference of thermodynamic potential Ω(T, µ; M) in the chiral limit for the homogeneous

phase with constituent mass M and its value for M = 0 in units of the bag constant Bvac. The black

(long-dashed) line corresponds to Mq = 250MeV, the red (short-dashed) to Mq = 300MeV and the orange

(solid) to Mq = 350MeV. All for vanishing temperatures and µq at the first order phase transition (when

limiting to homogeneous phases). Right: Difference of thermodynamic potential Ωphase in the chiral limit

for various phases and its value for M = 0 for Mq = 300MeV in units of the bag constant Bvac. The black

(long-dashed) line corresponds to the inhomogeneous, the red (short-dashed) to the chirally broken and the

orange (solid) to the chirally restored phase.
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FIG. 4: Left: Same plot as on the right of Fig. 1, now including the domain of inhomogeneous phases

for m = 5MeV and m = 10MeV. Branches with critical points at smaller temperature T and larger quark

chemical potential µq correspond to larger current quark masses m. Right: Same plot as on the left for

Mq = 350MeV.

the thermodynamic potential for the energetically most preferred homogeneous phase as well as

inhomogeneous phase. Plotted are only cases that form a local minimum of the thermodynamic

potential as an effective action, such that e.g. the spinodal region can be deduced from the plot.

In the case of several local minima at a given µq the global minimum is energetically preferred and

we see that if existent, the inhomogeneous phase forms the ground state. Also the order of the

phase transitions can be deduced from the plot.

As a next point we want to address the case of finite current quark masses. For this purpose we

again fix the parameters Gs, Λ by choosing fπ, Mq in the chiral limit and then turn on a finite

current quark mass m. In Fig. 4 we present our results for the relevant part of the phase diagram
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NJL with vector interactions
S. Carignaro et al. (2010)

I extended Nf = 2 NJL Lagrangian:

L = q̄
(
i∂/−mq

)
q + Gs

(
(q̄q)2 +

(
q̄iγ5τ aq

)2
)
−Gv (q̄γµq)2

I spatially varying chemical potential: µ̃

µ̃(x) = µ− 2GVn(x)

I sacrifice complete self-consistency: pick µ̃ ≡ 〈µ̃〉z instead of µ̃(z)

Ω(T ,µ)→ Ω(T , µ̃)− (µ̃− µ)2

4GV

I determine µ̃ from
δΩ

δµ̃
= 0
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Phase diagram with vector interactions
mq = 0

homogeneous
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Phase diagram with vector interactions
mq = 0

inhomogeneous
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Phase diagram with vector interactions
including the Polyakov loop
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FIG. 8: Phase diagram of the NJL (solid line) and PNJL (dashed line) model allowing for one-dimensional

spatial modulations of the order parameter.

with two parameters a and b. Other prescriptions, like the polynomial [14] or the logarithmic [52]

potential, would lead to very similar results.

When dealing with inhomogeneous phases, ! and !̄ are naturally expected to be spatially dependent,

presumably following the density profile in some way. Nevertheless, similar to the treatment of

µ̃ in the previous section, we will assume spatially independent values of ! and !̄, even in the

inhomogeneous phase. This is not only to keep the technical side of the calculation trackable,

but also the assumptions made in order to derive (42) and the unknown kinetic contributions to

Eq. (43) suggest such a conservative approach as a first step.

To summarize, we obtain a thermodynamic potential

ΩPNJL = Ωkinetic|fthermal→fthermal,PNJL
+ Ωcond + U(!, !̄) , (44)

with Ωkinetic and Ωcond given in Eqs. (4)-(11), that additionally needs to be extremized in ! and !̄.

B. Numerical results

Since we consider the NJL model with GV = m = 0 as our starting point, we shall limit ourselves

to this case when studying the role of the Polyakov loop. For the Polyakov-loop potential, we adopt

the parameters of Ref. [10], a = 664MeV and b = 7.55 · 106 MeV3. The parameter a was fixed

by the condition that for pure gluo-dynamics the phase transition takes place at T = 270 MeV,

while b was chosen to have a crossover around T = 200 MeV at µ = 0 when quarks are included.

Since we are mainly interested in the qualitative effect of the Polyakov loop, we did not perform a

refit of b within our regularization scheme. We checked, however, that this parameter choice gives

reasonable results for the behavior of the order parameters at µ = 0.

stretching in the T - direction
well known from homogeneous case
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FIG. 9: Polyakov loop expectation value ! in the µ-T plane in the vicinity of the inhomogeneous phase.

In Fig. 8 we compare the phase diagrams for the NJL model with that of the PNJL model,

allowing for phases with a one-dimensional solitonic modulation in both cases. Aside from a

general stretching in the T -direction, which is well known from studies of homogeneous phases

and easily explained by the replacement (42), the Polyakov loop has no effect on the qualitative

structure of the phase diagram. In particular, the critical point at GV = 0 still coincides with the

Lifshitz point.

In Fig. 9 the value of ! is presented via color coding in the region of the phase diagram where the

inhomogeneous phase is favored. We find that ! and !̄ are rather small in the entire inhomogeneous

phase, reaching their maximum values ! ≈ 0.15 and !̄ ≈ 0.2 near the LP. In this context we should

recall that at vanishing temperature the Polyakov-loop dynamics decouples completely from the

quark sector due to the way the PNJL model is constructed. As a consequence, ! = !̄ = 0 at T = 0,

independent of the density. While it is unclear whether this feature of the model is realistic, it

means that our assumption of space-independent Polyakov-loop expectation values cannot have a

large effect. Even if ! and !̄ followed the density profile, the results would not be very different,

because at low temperatures their values are very small anyway, whereas at higher temperatures

the density differences get washed out.

IV. DISCUSSION

In this work we have analyzed the role of the isoscalar-vector interaction and the dynamics of the

Polyakov loop on recently discussed inhomogeneous ground states in the phase diagram of the NJL

model. Mainly for technical reasons we thereby limited ourselves to inhomogeneous phases with a

one-dimensional modulation, explicitly to domain-wall soliton lattices and for comparison to chiral

spirals. This allowed us to exploit the knowledge obtained for lower dimensional models in our

study.

` ( ¯̀) rather small in the inhomogeneous region
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Conclusions and outlook
Inhomogeneous phases

I self-consistent lower-dimensional spatial modulations can be studied by
relying on analytical results from the Gross-Neveu model

I inhomogeneous 1D phases favored in a region of the QCD phase diagram
I ’solitonic’ region bounded by 2nd order phase transitions
I inclusion of vector interactions→ shift to higher µ
→ split of CEP and Lifschitz point

I 1D phases unstable against thermal fluctuations!
I higher-dimensional inhomogeneities?
→ complicated ’band structure’ calculations

I interplay between chiral- und superconducting phases
I inhomogeneous Polyakov loop?
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QCD2 lattice results
J. Myers et al. (2010)

QCD2 on a hypersphere S3 × S1 with R � ΛQCD

’Two-color Attoworld’ (S. Hands)

Two Color Attoworld w/ Joyce Myers, Tim Hollowood

Consider theory on S3xS1, with (hyper)sphere radius R<<!QCD 

At one loop, can consistently retain 
just the gluon zero mode

⇒

(Tµµ)g = −a
∂β

∂a

∣∣∣∣
LCP

× 3β

Nc
Tr〈!t + !s〉;

(Tµµ)q = −a
∂κ

∂a

∣∣∣∣
LCP

× κ−1(4NfNc − 〈ψ̄ψ〉)

jκ(ψtr
2 Cγ5τ2ψ1 − ψ̄1Cγ5τ2ψ̄

tr
2 )

nI(µ) ∝ exp
[
−Nfρ

2
Iµ

2
]

∝ exp

[
−const

µ2

]

S(θ) =
∑∞
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1

n

(
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∞∑

)=1

2)() + 1)e−nβ()+1)/R

)

× ∑Nc
ij=1 cos(n(θi − θj))

+Nf

∑∞
n=1

(−)n
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)=1

2)() + 1)e−β
√
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Figure 1: Expectation value of the fermion number as a function of the quark chemical

potential for QCD on S1 × S3. N = 3, Nf = 1, m = 0, β/R = 30 (low T ). (Left): low µ.

(Right): high µ.

over the θi. Each observable is calculated an expectation value with the form

O ≡
∫

[dθ] e−SO∫
[dθ] e−S

−−→
N=3

∫
dθ1dθ2e

−SO∫
dθ1dθ2e−S

(4.9)

where the integrals over θ3 drop out as θ3 = −θ1 − θ2 by the SU(N) condition.

These results will multiplied by factors of β and or V3 as needed to make them

dimensionless. In this paper we present results for Nf = 1 Dirac fermion flavour.

4.0.1 Fermion number N

The fermion number gives the number of quarks minus the number of antiquarks in

the volume of S3, V3 = 2π2R3. From Figure 1 a stair-case level structure is apparent.

For massless quarks, m = 0, the average number is

N =
1

β

(
∂ ln Z

∂µ

)

=
−1

βZ

∫
[dθ] e−S

(
∂S

∂µ

)

−−−→
β→∞

Nf

Z

∫
[dθ] e−S

∞∑

l=1

N∑

i=1

2l(l + 1)

[
eβµ

eβµ + e−iθi+β(l+1/2)/R

]
,

(4.10)

where the derivative of the action (3.5) with respect to the chemical potential brings

down a factor of nβ, leading to a geometric series which gets summed to give the

– 11 –

0

0.25

0.5

0.75

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
µR

P1

P−1

0

0.25

0.5

0.75

1

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15
µR

P1

P−1

Figure 2: Expectation values of Polyakov loops P1 and P−1 for N = 3, Nf = 1, m = 0,

β/R = 30 (low T ). (Left): low µ. (Right): high µ.
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Figure 3: P1 and P−1 as a function of µR at the first transition (Left), and the fourth

(Right). N = 3, Nf = 1, m = 0, β/R = 30 (low T ).

Figure 2 shows P1 and P−1 as a function of µR. Each spike in P1 and P−1

corresponds to a transition in N . Even though their behaviour as a function of

µR is similar, the peaks of P−1 always preceeds P1 at the start and finish of each

transition.

In Figure 3 we compare the first and fourth transitions. As µR increases the

width of the deconfined regions increases.
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Quark density rises 
stepwise as finite “shells” 
are filled with occupancy

NL = NcNf

L∑

!=1

2!(! + 1)

Aconst
0 = diag(eiθ1, . . . , eiθNc)

2

Polyakov line indicates 
alternating ranges of 

confinement and 
deconfinement

⇔ partially-filled shell

NL = NcNf

L∑

!=1

2!(! + 1)

Aconst
0 = β−1diag(θ1, . . . , θNc)

2

⇒ WCPT applicable
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