
  

Hadronisation in a
Parton Cascade Model with

Non-additive Energy Composition

Hot and Cold Baryonic Matter

Budapest, Hungary, Aug, 2010.

Karoly Urmossy1,2

with

T. S. Biro2, G. G. Barnafoldi2 and P. Van2

1, Dep. for Theor. Phys. at Roland Eotvos University, Budapest, Hungary

2, Research Inst. for Nucl. and Particle Phys., Budapest, Hungary

mail:  karoly.uermoessy@cern.ch



  

Particle spectra take Cut power-law shape:

Appetiser

AuAu --> h+X
at √s = 200 GeV

pp --> h±+X
at √s = 0.2–2.36 TeV



  

Menu: 
● Thermal quark recombination
 with Tsallis distribution in
 AuAu collisions

● π spectrum from a non-extensive
 'quasi-quark cascade model'
 simulation 

● Generalised statistics (based on
 the Theorem of Large Deviations)
 resulting in Tsallis distribution



  

Thermal QuarkThermal Quark
Recombination withRecombination with
Tsallis DistributionTsallis Distribution
in AuAu Collisionsin AuAu Collisions



  

Fh Ph=∫∏ d3 pi f q E1 f q EnC pi , Ph , M h

Thermal Re-hadronisation By Quark Coalescence

n on-shell quarks produce a hadron very rapidly:

The hadron formation requires energy-momentum
conservation and that the incoming quarks have
small relative momenta

C  pi , Ph , M h=4 ∑ pi
−Ph

∏ 3  pi− Ph /n 



  

E
dN

d3 p
=∫ d

J 

Hadron Evaporation from the Expanding Plasma

The 3-volume of the QGP evolves in time and spits out
hadrons:

The number of hadrons leaving the plasma with
momentum, pμ is the flux of the hadron current through
the hadronisation hyper-surface. 

V 3
QGP

t 


TIME

with hadron current J=
p

p0 Fh Eh



  

Spacetime coordinates:

u
 ,=cosh  , sinh , v cos ,v sin  , =

1

1−v2

Flow Profile of the Expanding Plasma

X

Y

R

Z

r ,  , =
1
2

ln  t−ztz , =t2−z2

Flow profile:



  

The reasons for this type of parametrisation, and the choice
of such a flow profile are

●Cylindrical symmetry → r, α

●In non-viscous hydro temperature is a function
of proper time T(s)

●The expansion is longitudinally dominated, so
 

is a good approximation.

●It is reasonable to say, the plasma evaporates
hadrons from its surface, until its whole volume
hadronises abruptly at a certain longitudinal
propertime, when its temperature

s=t2−r2
−z2

 =t2−z2

T 0=T c



  

x=cosh  , sinh , r cos , r sin 

u=cosh ,sinh , v cos , v sin

p=mT cosh y ,mT sinh y , pT cos , pT sin 

Parametrisation of the spacetime, flow and hadron momentum

The integration measure in the hadron yield calculation:

pd =mT cosh  y−r ddr d

mT sinh  y−r ddr d

pT cos − r ddd

pT sin −dddr



  

The Hadronisation hyper-surface

Z / τ

 t
 

min

≈−∞

max

≈∞

R

In the t-z plane

In the r-ζ plane

BEAM BEAM

=0

=max≈∞



  

Used thermal hadron distributions:

1. p0dN
d3 p

~ mT K 1 mT  I0 vpT 

1− pT K 0mT  I 1vpT  ~ e−mT−vpT 

The resulting transverse hadron yielsd are:

2. p0 dN

d3 p
~

mTG0  pT 1− pTG2 pT 

1q−1mT−vpT 
1/q−1

~ pT
−q /q−1

1. FhE =A e−E

2. FhE=A 1q−1E /T 
−1/q−1

Boltzmann-Gibbs

Cut power-law

with E, the hadron energy in the frame co-moving with
the plasma flow,

E=pu




  

Cut power-law and exponential fits to identified particle spectra,
produced in AuAu --> h+X at √s = 200 GeV .



  

Data / Theory plots for
Identified particle spectra,
In Au + Au - > h + X
Reactions at
s = (200 GeV)2

Collision energy

■ Boltzmann–Gibbs
▲ power-law, 
     surface terms only,
     ξ = 0.
● power-law,
    volume terms only,
   ξ = 1.
● power-law,
    ξ  = surface/volume
   ratio is fitted.
   (ξ  ≈ 0.5)  

K. Urmossy, T. S. Biro, Phys. Lett. B, 689: 14-17, 2010.



  

Boltzmann-Gibbs Fits to Au Au - > h X  at s = (200 GeV) 2

T = 51 ± 10 MeV, q = 1.062 ± 7.65 × 10−3, v = 0.5 ± 0.1

      



  

X=
1

q−1
log [1q−1mT−v pT /T ]

Cut Power-law Fits to Au Au - > h X  at s = (200 GeV) 2

T = 51 ± 10 MeV, q = 1.062 ± 7.65 × 10−3, v = 0.5 ± 0.1

      



  

Generalised statisticsGeneralised statistics
(based on  the Theorem(based on  the Theorem

of Large Deviations)of Large Deviations)
resulting inresulting in

Tsallis distributionTsallis distribution



  

1, Choose ensamble!
The QGP produced in a heavy-ion collision is NOT in
equilibrium with its surroundings or with any heat bath.
So if it is ergodic and is in equilibrium, it is
micro-canonical with density operator = H−E0

f k=〈ak
† ak 〉=∫Dak

†ak∫−∞

∞

dseis {H []−E0}=

2, So the 1-particle distribution, we look for is

3, Instead, we try to model the system with 
statistically independent quasiparticles, and 
call for the help of probability theory.

The 1-particle distribution of quarks in the QGP



  

Let ξi be independent, identically distributed random
variables, representing the single particle energies

f =p 1= ∣ ∑
1

N

i=E = e−
/Z , 

E
N

=∫ f 

It is a pure mathmatical statment. It does not involve 
the introduction of any sort of entropy formula.

Theorem of Large Deviations

No need for equilibrium   ;-)

−∫ f ln f− ∫ f −E /N =min  f ~e−

Max. Entropy principle gives the same 1-PD.



  

If we can express interactions with an associative rule
among single particle energies

E12=hE1 , E2  EN=h°h°°h E1 , E2 ,, EN 

Such a rules can be turned into a additive one

The use of TLD for interacting particles

LEN =LE1LEN 

by a monotonic function ('Formal Logarithm'), L(E),
and the TLD holds for the new variable =L

p 1= ∣ h°°h1 ,,N =E 
= p 1=L ∣ ∑ i=LE 

= e−
/Z=e− L

/Z , 
LE

N
=∫ L f 



  

The Max Entropy principle gives us the same result

Examples for energy addition rules (aE1E2 : interaction)

E1E2=E1E2  L=  f ~e−

−∫ f ln f− ∫ LE f E−LE0/N =min f E=
e− LE 

Z 

E1E2=E1E2aE1E2  L=
1
a

log 1a

 f ~1a−1/a

Boltzmann

Tsallis when
a=q−1/T

1)

2)

3T=
E /N

1a E /N E~L−1 N L
a

N

a

Temperature and mean
1-particle energy Non-extensivity



  

ππ Spectrum From a Spectrum From a
Non-extensiveNon-extensive

'Quasi-Quark Cascade'Quasi-Quark Cascade
Model' SimulationModel' Simulation



  

Instead of struggling with perturbation

We try out a
 simple rule

 p1 p2− p3− p4

×E1E2−E3E4

With

E1E2=

=E1E2aE1E2



  

For massless out going particles this means

The phase space of the out going particles is

p2

p1

P

Along this line

Eout=p1p2a p1 p2

=Ein=const

d2w=w0d
3 p1d

3 p2 p1 p2−PE1E2−Ein

=w0

E1 E in−E1

P 1a E1
2 dE1d



  

When E1 is fixed,

P

E in=E1E2a E1E2 E2=
E in−E1

1a E1

P

P

P

E in
E in

E in

E in

E2 E2

E1E1 E1

Large P Small P



  

Because of the triangle inequality among

P P

P

P

E in
E in

E in

E in

E2 E2

E1E1 E1

p1, p2,
P

OK OK

P 
2
a

1aE in−1  P

↑ ↑



  

P

E1∉P/2±P /2
2
−E in−P/a

P

P

P

E in
E in

E in

E in

Triangle
Inequality
Ok here

         Triangle
   Inequality
Ok here

E2 E2

E1E1 E1

E1∈±
P
2

−
1
a
 P2 

2


1

a2
E in

a↓ ↓

↑



  

a fix, P grows

simulation
using ROOT

Elementary
qq – > qq
reaction



  

PP0

P1

P

P2



  

PP0

P1

P

P2



  

Hadronisation is modelled by a

Large interaction
energy put into
the mass of the
Resonance

qqResonance



−

Probability
of color       ~1/9
neutrality

M R
2 =ER

2 − PR
2

ER=ENEN−2

PR= p1 p2

ER~1a
N−2

2a
2




  

PreliminaryPreliminary
ResultsResults

Quasi-quark Cascade Collision Simulation



  

Finite N, E – > cut in the spectrum at high E

Jets at CDF@Tevatron

√s = 1.96 TeV    

Pions from parton cascade 

Interaction measure a = 1

mailto:CDF@Tevatron


  

The spectrum changes from Boltzmann to Tsallis 
as interactions (a) grow

Log – Lin plot Log – Log plot



  

Mass Distribution of Resonances

M R
2 =ER

2 − P2

EN=EN−2ER

EN=E1E2EN

as usual

but

With interaction measure a = 1



  

Conclusions
● From thermal model and direct fits to hadron spectra 
produced in AuAu –> hX and pp –> hX reactions we have 
seen that the Tsallis distribution is a plausibile ansatz for 
the newly created quasi-particles. 

● Such distribution may occure in any situation that can be 
modelled by independent, identically distributed variables 
the sum of whose is constrained through an associative rule
                            .

● The idea of estimating interaction energies with single 
particle kinetic energies (like aE1E2) gives good results when 
put into a quasi-quark cascade model. Simulations give a 
pion spectrum that is consistent with measurements. The 
cut on the spectrum at high E (because of finite N, E) is like 
what is observed on jet spectra at Tevatron. 

1N=fix



  

Back-up 
Slides



  

∂t f=∂p G EE '∂pD E  f

h(x,y) as the effect of the environment

Hence the connection of h and D, G:

f E=
A

D E
exp−∫

E d EG  E

D  E 
With stationary sollution

G E=
D E

h'2E ,0
−D ' E

Fokker-Planck approach:



  

h(x,y) as the effect of the environment

Boltzmann-Gibbs case:

hE1,E2=E1E2a E1E2 LE=
1
a

ln 1aE

f=1aE−/a /Z

Tsallis case:

hE1,E2=E1E2 LE =E
f=exp −E/Z

h E1,E2=E1E2a E1E2b /2E1
2E2E2

2E1

LE=
1


ln  2a−E
2aE  f=1−

2E
2aE 

/

/Z

=a2
−2b

Hyper-Tsallis case:
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