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Abstract. Resonance production and decay into pion pairs is simulated in a non-extensive quark matter with
multi-particle interactions. Final state pion spectra are found to take the form of the Tsallis distribution, in ac-
cordance with measurements. It has also been shown that, if a large number of particles with these multi-particle
interactions are constrained to a constant energy hyper-surface in phase space, the one-particle distribution is the
Tsallis distribution.

1 Introduction

Transverse hadron spectra measured in high energy colli-
sions in the last three decades, fit to the Tsallis distribution
(TS) (see Refs. [1]-[12] for proton-proton (pp), proton-
antiproton (pp̄) and nucleus-nucleus (AA) collisions and
Refs. [13,14] for e+e− collisions). On the theoretical side,
there are many proposals on the emergence of the TS dis-
tribution. In kinetic theory, the collision term of the Boltz-
mann-equation [15]-[17], or the noise term of the Langevin-
equation [18] can be generalised in a way, in which the
TS distribution is the stationary sollution. In equilibrium
thermodynamics, the Maximum Entropy Principle (MEP)
together with a generalisation of the Shannon-entropy for-
mula (the Tsallis-entropy, see Ref. [19]) also lead to the TS
distribution, as a generalisation of the canonical Boltzmann-
Gibbs distribution (BG). The TS distribution can also be
derived from the MEP by introducing special interactions,
while, leaving the original Shannon-entropy unaltered [11,
20].

In all the above cases, equilibrium, or at least stationar-
ity is assumed, while the question of equilibration in high
energy collisions is still a subject of intense debate. How-
ever, examining the mathematical foundations of statistical
physics [21,22], it turns out, that statistical physical distri-
butions may be used not only in equilibrium. Whenever
a system is composed of idependent and identically dis-
tributed particles, and the total energy of the system is con-
served, the one-particle distribution may be approximated
by the canonical distribution in the limit of a large number
of particles. The reason for this is that Central Limit The-
orems (CLT) do not deal with the issue, whether particles
have the same distribution, because they are thermalised,
or because they are produced via the same process.
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In this paper, we discuss resonance production in a
non-extensive quark-gluon medium, in which multiparticle
interactions of the form of Eq. (4) are present. In Sect. 2
we show, that (apart from a phase-space factor) the one-
particle energy distribution in such a medium is the TS
distribution in the limit of a large number of particles. In
the calculation we use only probability theory, thus the re-
sult is valid not only in equilibrium. We also outline some
advantages and disadvantages of the probability theory ap-
proach to the thermodynamical one.

In Sect. 3 we introduce a model in which a non-exten-
sive quark matter (QM) evolves in time via the collisions of
randomly chosen quark pairs. In the collisions, the 3-mo-
mentum, and the total (non-extensive) energy of the sys-
tem is conserved. In Sect. 3.1 we present a way, in which
hadron resonances may leave the QM and decay into pion
pairs without the violation of the conservation of the total
energy and momentum of the system.

Sect. 4 contains the resulting final-state pion spectra
and the mass spectrum of the resonances. Sect. 5 contains
our concluding remarks.

2 Probability Theory, Maximum Entropy
Principle and the Tsallis Distribution

In this section we review the derivation of the canonical
BG distribution using probability theory. During the de-
duction, we allow for a constraint on the N particle phase
space that is more general than the conservation of the sum
of the one-particle energies. This way, we may obtain a
wider class of distributions covering those having power-
law asymptotics as well.

Let us assme, that a system is composed of a large
number of particles, all being independent and identically
distributed (iid.). For example let the particles have the
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same phase space structure with momentum-space distri-
bution, dF(pi) (in a homogenious, isotropic ensemble
dF(pi) ∝ d3pi). In this case the probability that a parti-
cle has energy, ε, while the total energy of the system, E is
fixed, is

dPN

dF(p)
=
ΩN−1(E′)
ΩN(E)

(1)

with E′ being the energy of N − 1 particles (when particles
do not interact, E′ = E − ε) and ΩN(E) being the phase
space volume of N particles restricted to the constant en-
ergy hyper-surface:

ΩN(E) =

∫ ∏
i

dF(pi) δ

∑
j

L(ε j) − L(E)

 (2)

via the constraint, ∑
j

L(ε j) = L(E) . (3)

For example, if the particles are non-interacting,
∑
ε j = E,

thus L(ε) = ε. In the model, reported in [11], the following
multiparticle interaction has been proposed:

EN = ε1 + . . . + εN

+ a ( ε1ε2 + . . . + εN−1εN )
...

+ aN−1ε1 · · · εN . (4)

The above rather complicated energy formula can be turned
into a simlpe addition of the form of Eq. (3) by a so-called
formal logarithm [20],

L(ε) =
1
a

ln(1 + a ε) . (5)

Moreover, the constrained N particle phase space volume,
Eq. (2) can be factorised using 2π δ(x) =

∫
ds exp(i s x):

ΩN(E) =

∞∫
−∞

ds exp
{
−N

(
−i s

L(E)
N
− Î(s)

)}
(6)

with the logarithmic generator function of the one-particle
phasespace distribution, Î(s) = ln

(∫
dF(p) exp [−i s L(ε)]

)
.

In the large N limit, Eq. (6) may be approximated by the
saddle-point method:

ΩN(E) ≈ exp
{
−N F [s?]

}
(7)

where F is the free energy per particle,

F [s?] = −i s?
L(E)

N
− Î(s?) , (8)

and the inverse temperature β = i s? minimises F :

L(E)
N

=

∫
dF(p) L(ε) exp

[
−β L(ε)

]∫
dF(p) exp

[
−β L(ε)

] . (9)

Note, that β and thus F also depend on L(E)/N. Applying
Eq. (7), the one-particle energy distribution (Eq. (1)) in the
large N limit, is approximately

dPN

dF(p)
≈ exp

{
−(N − 1)F

[
L(E′)
N − 1

]
+ N F

[
L(E)

N

]}
(10)

with L(E′) = L(E) − L(ε). Exploiting that E � ε, in the
first term in the bracket, we may Taylor-expand F around
L(E)/N. It follows from Eq. (8) that

F ′
[

L(E)
N

]
= −i s? +

(
−i

L(E)
N
− Î′(s?)

)
s?′ = −β . (11)

The expression in the bracket in Eq. (11) vanishes because
of Eq. (9). Consequently, if we neglect the terms in the
Taylor-series that are proportional to 1/N (or smaller), the
one-particle distribution, Eq. (10) gives the distribution:

dPN

dF(p)
≈

exp{−βL(ε)}∫
dF(p) exp{−βL(ε)}

. (12)

The above calculation is similar to the variational met-
hod based on the Maximum Entropy Principle. There, a
free energy functional Φ[ f ] is constructed from the one-
particle distribution f , that contains an entropy term, S [ f ]
and constraints C[ f ]:

βΦ[ f ] = −S [ f ] + βC[ f ] . (13)

There are several proposed formulas on S [ f ], however there
is no recipe on how to construct the appropriate S [ f ] for
a system defined by a given Hamiltonian. The following
choices of C[ f ] and S [ f ] both lead to the TS distribution:

S [ f ] = −

∫
dF(p) f (ε) ln[ f (ε)]

C[ f ] =

∫
dF(p) L(ε) f (ε) −

L(E)
N

; (14)

S [ f ] =
1 −

∫
dF(p) f q(ε)

q − 1

C[ f ] =

∫
dF(p) ε f (ε) −

E
N
. (15)

In Eq. (14), the entropy is additive for independent par-
ticles, while interactions of the form of Eq. (3) are pres-
sumed, thus the mean one-particle energy is constrained
through the formal logarithm.
In Eq. (15), particles are assumed to be non-interacting,
thus the mean energy per particle is set to be E/N, however,
a generalised entropy formula accounts for correlations.

Both the Maximum Entropy Principle and the probabil-
ity theoretical approach are based on finding the minimum
of a free energy, however, there are two main differences
between them:
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1) Behind the Maximum Entropy Principle, there is the
assumption of thermal equilibrium, while in the prob-
ability theoretical approach, there is no need for such
an assumption;

2) In the probability theoretical approach, particles need
to be independent, while this is not required in a model
based on the Maximum Entropy Principle.

3 Parton Collision Cascade Simulation and
Pion Production

In this section, we use a model reported in [11]. We con-
sider N massless quarks (εi = |pi|) with interactions of the
form of Eq. (4). The ensemble has an initial momentum
distribution that is homogenious inside a Fermi sphere of
radius pF . The momentum distribution evolves in time via
collisions of randomly chosen pairs. In pair collisions the
3-momentum and the formal logarithm of the energy are
conserved:

Fig. 1. The E1 − E2 plane, in case, when the total momentum of
the incoming quarks P is sufficiantly small. Because of the trian-
gle inequality among p1, p2 and P, the energies of the outgoing
quarks (E1 and E2) have to be chosen from the filled area. Fur-
thermore, E1 and E2 have to satisfy Eq. (19) (solid red curve).

p1 + p2 = p3 + p4 ,

L(ε1) + L(ε2) = L(ε3) + L(ε4) . (16)

(The second row in Eq. (16) also ensures the conservation
of not just the pair energies but that of the total system.)
Thus the momenta of the outgoing quarks are chosen ran-
domly according to the distribution

dw = d3 p1 d3 p2 δ (p1 + p2 − P)
× δ(E1 + E2 + aE1E2 − Ein) (17)

Fig. 2. The E1 − E2 plane, in case, when the total momentum of
the incoming quarks P is sufficiantly large. Because of the trian-
gle inequality among p1, p2 and P, the energies of the outgoing
quarks (E1 and E2) have to be chosen from the filled area. Fur-
thermore, E1 and E2 have to satisfy Eq. (19) (solid red curve).

with the total momenta and energy of the incoming quarks:
P and Ein. Integrating out for p2, we obtain the energy dis-
tribution of the first outgoing quark:

p(E1) ∼
E1 (Ein − E1)

(1 + aE1)2 (18)

Once E1 is obtained, the energy of the second outgoing
quark is

E2 =
Ein − E1

1 + aE1
. (19)

The particles are massless, thus the equation p1 + p2 = P
defines the angles between their momenta and P. However,
E1 may not take any value between 0 and Ein, because p1,
p2 and P must obey the triangle inequality.

• If P ≤ 2
a

(√
1 + a Ein − 1

)
, we have to choose E1 from

the interval E1 ∈ ±
P
a −

1
a +

√(
P
2

)2
+ 1

a2 + Ein
a (Fig. 1);

• If P > 2
a

(√
1 + a Ein − 1

)
, E1 must satisfy the con-

ditions: E1 ∈ ±
P
a −

1
a +

√(
P
2

)2
+ 1

a2 + Ein
a , and that

E1 <
P
2 ±

√(
P
2

)2
−

Ein−P
a (Fig. 2).

An interesting feature of this model is its exponential
non-extensivity. Let us estimate the dependence of the total
energy of the system on the number of its constituents in
the case, when the mean energy per particle, ε̄ is fixed.
From Eq. (3), the total enrgy of the system estimated from
the equipartition principle, εi = ε̄, is
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Fig. 3. Schematic picture of resonance production in a non-
extensive medium. Spots represent quarks, curves represent in-
teractions among them.

E ≈ L−1[N L(ε̄)] ≈
1
a

(1 + aε̄)N . (20)

3.1 Resonance Production in a Non-extensive
Medium

Eq. (20) illustrates that, when a color-neutral quark anti-
quark pair leaves the system, and forms a hadron reso-
nance, it carries a big amount of interaction energy. (see
Fig. 3 as a schematic picture of resonance production) Be-
cause of the 3-momentum conservation, this hadron can
not be on-shell. For simplicity, we do not distinguish be-
tween quark flavours, and consider only a pion pair pro-
duction in the decay of the resonance. Since the resonance
(R) has left the quark matter (QM), R does not interact with
the QM any more. Thus the energy of R is simply the dif-
ference of the total energy of the QM before (EN) and after
(EN−2) the formation of R:

ER = EN − EN−2 = E12
1 + aEN

1 + aE12

≈ (1 + aε̄)N−2(2ε̄ + aε̄2) (21)

with E12 = E1 +E2 +aE1E2 being the energy of the qq̄ pair
without its interaction with the rest of the QM. The second
equality and the last term in Eq. (21) follow from Eq. (3).
This shows, that the energy of R can be much greater than
that of the qq̄ pair, while the momentum of R is exactly the
same of that of the qq̄ pair. Consequently, the production
of big resonance masses is allowed, as shown in Fig. 4.
The rest mass of R then contributes to the kinetic energies
of the pions when R decays, resulting in a long tail of the
momentum distribution of the pions, as shown in Figs. 5-7.

4 Results

The model described in Sect. 3 converges to the TS distri-
bution (Eq. (12) in the case, when L(ε) = (1/a) ln(1 + aε))

dPN

dp
= A p2 (1 + a ε)−β/a , (22)

when started from a homogeneously filled Fermi sphere.
When resonance production (described in Sect. 3.1) is added

Fig. 4. Simulated resonance mass distribution from the model de-
scribed in Sect. 3. The histogram in the figure is the sum of statis-
tics collected in 1000 events with 50 resonance produced in each
event. Through out the simulation, a = 1 was used.

to the model as well, the results shown in Figs. 4-7 are ob-
tained. As a result of the large interaction energy caused
by the multi-particle interaction therms in Eq. (4), the pro-
duced resonances may have large masses, as can be seen in
Fig. 4. The mass distribution of the resonances, dNR/dMR
shows power-law behaviour for two orders of magnitude
in the mass MR. Low masses, MR < 2mπ are not allowed
throughout the formation.

When the resonances decay, their rest energy contributes
the kinetic enrgies of the produced pions. This causes long
power-law tails of the final state pion spectra shown in
Figs. 5-7. Fig. 5 shows the dependence of the final state
pion spectrum on the number of quarks (which is equal to
the number of final state pions in the process qq̄ → R →
π+π−) in the QM, when the interaction measure, a = 1.
Apparently, the spectra take the form of Eq. (22) in the
canonical region, where the one-particle energy is much
smaller, than the total energy of the system, ε � EN . For
larger energies, ε ' ε0, however the spectra have a cut. ε0
is proportional to the total energy, and grows like ε0 ∼ ε̄

N .
Figs. 6 and 7 show the dependence of the spectrum of

events with fixed multiplicity (N = 2000) on the interac-
tion measure a. Apparently, the spectra change from BG
to TS, as the interaction measure grows from a = 0.01 to
a = 0.2. The spectra with a = 0.01 and a = 0.02 are nearly
BG distributions (apart from the cuts above ε0), while spec-
tra with a = 0.05, a = 0.1 and a = 0.2 are well-developed
TS distributions (Eq. (22)).

5 Conclusions

In this paper, we discussed hadronisation in a non-extensive
quark matter with multiparticle interactions of the form of
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Fig. 5. Simulated π+ + π− spactra from the model described in
Sect. 3. The colour encoding distinguishes between the spectra
of events with different multiplicities. Each histogram contains
statistics of 1000 events. Through out the simulations, a = 1 was
used.

Fig. 6. Simulated π+ + π− spactra from the model described in
Sect. 3, shown in a log-lin plot. The colour encoding distinguishes
between the spectra of events with different interaction measures,
a. Each histogram contains statistics of 100 events with 2000 π-s
per event.

Fig. 7. Simulated π+ + π− spactra from the model described in
Sect. 3, shown in a log-log plot. The colour encoding distin-
guishes between the spectra of events with different interaction
measures, a. Each histogram contains statistics of 100 events with
2000 π-s per event.

Eq. (4). In Sect. 2 we have shown that the one-particle dis-
tribution is the Tsallis distribution in a system, which is
composed of independent and identically distributed parti-
cles, that are constrained on a constant energy hyper-surface
in phase space by Eq. (4). (We note, that this statement is
valid only in the limit of a large number of particles, and
if the one-particle energy is much smaller than the total
energy of the system.) Furthermore, this statement holds
for non-equilibrium systems as well (this, being its advan-
tage over the approach based on the Maximum Entropy
Principle (MEP)), however, the MEP may be used for non-
independent particles too.

In Sect. 3, we have presented a hadronisation process,
that respects the conservation of the total 3-momentum and
non-extensive energy of the system. In the process, first
resonances are formed, then decay into pion pairs. We have
found that the resonances may have large masses, due to
the large interaction energies in the quark matter, caused
by the multiparticle interactions. This leads to the power-
law tailed resonance mass distribution shown in Fig. 4. The
resonance masses then contribute to the kinetic energies of
the pions, resulting in long, power-law tailed pion spectra
presented in Sect. 4.

Since both our simulated and the measures pion spectra
take the form of the Tsallis distribution, we may conclude,
that the parameters of our model (mean energy per parti-
cle and interaction measure (a)) may be tuned so that our
results and experimental data be in accordance with each
other.
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