
Facets of the QCD Phase-Diagram

Volker Koch1,a, Adam Bzdak1,b, and Jinfeng Liao2,c

1 Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

2 Brookhaven National Laboratory
Upton, NY 11796, USA

Abstract. In this contribution we will discuss two aspects of the matter created in ultra-relativistic heavy ion
collisions. First we will attempt to define a universal measure for the fluidity of a substance, which will allow a
correct comparison between the fluidity of a Quark Gluon Plasma and any well known substance. Second we will
discuss current measurements of particle correlations andtheir implication for possible local parity violation.

1 Introduction

Experiments at the Relativistic Heavy Ion Collider (RHIC)
have revealed quite a number of interesting and surprising
results. Among them is the rather strong elliptic flow [1],
which seems to suggest almost ideal fluid-dynamic expan-
sion of the system created in these collisions (see e.g [2,3]
for a recent review). This observation has lead to the con-
jecture that the matter created in these collisions is strongly
interacting, with nearly ideal fluidity and the phrase “per-
fect fluid” has been coined to describe the matter at RHIC.
This was mostly inspired by the observation that a large
class of gauge theories exhibit a lower bound on the ratio
of shear viscosity over entropy-density,η/s ≥ 1/(4π), in
the limit of very large coupling [4]. And indeed it seems
that the ratio ofη/s ≥ 1/(4π) appears to be a lower limit
to all known substances [5,6] including quantum liquids
and cold Fermi gases [7]. However, it is not obvious to
which extent the ratioη/s controls or defines the fluidity
of a substance. It certainly does not enter naturally in the
non-relativistic Navier-Stokes equation. To clarify thissit-
uation, in the first part of this contribution we will discuss
how one can define a measure of fluidity which is equally
applicable for both relativistic fluids, such as the Quark
Gluon Plasma (QGP) as well as non-relativistic fluids, such
as water. Details can be found in [8].

Another potentially interesting aspect of heavy ion col-
lisions is that they may be utilized to detect local parity vi-
olation due to the non-trivial topological properties of the
strong interaction, QCD. The suggestions by Kharzeev and
collaborators that the topological sphaleron transitionsto-
gether with a chirally restored phase created in heavy ion
collisions could result in the so-called Chiral Magnetic Ef-
fect (CME) [9]. The Chiral Magnetic Effect predicts that in
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the presence of the strong external (electrodynamic) mag-
netic field at the early stage after a (non-central) collision
sphaleron transitions induce a separation of charges along
the direction of the magnetic field. Of course, sphaleron
and anti-sphaleron transitions are equally likely, and, there-
fore, the event-averagedcharge separation will vanish. How-
ever, if present, the event-by-eventcharge separation should
be observable in a suitable correlation measurement. Such
a measurement has been proposed by Voloshin in [10] and
recently carried out by the STAR collaboration [11,12].
Here we will discuss to which extend the STAR measure-
ment is indeed sensitive to the CME. Details can be found
in [13–15]

2 A universal measure for fluidity

Let us start this section by reminding ourselves about the
non-relativistic Navier-Stokes equation [16] (in the absence
of bulk viscosity)

[∂t + v · ▽]v = −▽ p
ρ
+
η

ρ
▽jΣ

ji (1)

with the non-relativistic shear tensorΣ ji = ∂ jvi + ∂iv j −
2
3δ ji▽ · v. From this expression, one already sees that the
dissipative term is controlled by the ratio of the shear vis-
cosityη over the mass-densityρ, commonly referred to as
the kinematic viscosity [16]

ν ≡ η
ρ

(2)

This is similar to classical mechanics where the ratio of
friction over inertia and not the friction by itself controls
the dynamics. And indeed, while the shear viscosity of
water is a hundred times larger than that of air, its kine-
matic viscosity is a factor fifteen smaller, supporting our
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everyday notion that water is a better fluid than air. We fur-
ther note the absence of a term containing the widely dis-
cussed ratioη/s in the non-relativistic Navier-Stokes equa-
tion. Hence it is rather unlikely that this ratio can serve a
measure for the fluidity of non-relativistic fluids, such as
water. Considering the corresponding relativistic Navier-
Stokes equation [16],

γ2[∂t + v · ▽]v = − 1
w/c2

[▽ p +
v
c
∂0p]

+
η

w/c2
∂νΣ

νi (3)

with the relativistic shear tensorΣµν = c [∂µuν + ∂νuµ −
(u · ∂)uµuν + 2

3(uµuν − gµν)(∂ · u)], γ = 1/
√

1− v2/c2, uµ =
γ(1, v/c), and∂0 =

1
c∂t. The essential difference from the

non-relativistic version is that the inertia is now given by
the enthalpy-densityw instead of the mass-densityρ. Thus
the generalized form for the kinematic viscosity is

ν =
η

w
(4)

The enthalpy-density is given by

w = ǫ + p = T s + µn (5)

wheren is the particle density. In the non-relativistic limit,
T ≪ µ so thatµ→ m and

w
T≪µ
−→ mn = ρ,

ν
T≪µ
−→ η
ρ
, (6)

recovering the non-relativistic Navier-Stokes equation.In
the relativistic limit,T ≫ µ, on the other hand

w
T≫µ
−→ T s,

ν
T≫µ
−→ η

T s
(7)

Thus, in a sense the ratioη/s is measure of the kinematic
viscosity forrelativistic systems with small chemical po-
tential but certainly not for systems like water, where the
enthalpy-density is dominated by the mass-density.

To define a more precise measure of fluidity, let us an-
alyze the propagation of sound modes. In the linearized
regime, the dispersion relation for a sound mode is given
by

ω = cs k − i
2

k2 ×
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(8)

for a relativistic (R) fluid and non-relativistic (NR) fluid,
respectively. We note in passing, that the imaginary part,
i.e. the dissipation, is proportional to thesquare of the
wave-numberk which reflects the fact that fluid-dynamics
works always in the long wavelength limit. By requiring
that the ratio of the imaginary over the real part of the

sound frequency is small, we ensure that the sound mode
propagates well. Or in other word the condition

|Imω
Reω

| ≪ 1 (9)

results in a length-scaleLη

Lη ≡
{ η

(w/c2) cs
, R fluid

η

ρ cs
, NR fluid

}

(10)

which measures theminimum wavelength for which sound
propagates with little damping while for the shorter wave-
lengths dissipation becomes important. For a more precise
discussion we refer to [8]. As shown in [8], in the limit of
dilute gases, this length-scaleLη is directly related to the
mean free path,Lη ∼ λm f p, which can be defined for such a
system. However,Lη is not restricted to dilute systems and
can be extracted for any system, as it is defined in terms
of physical quantities, which do not required special con-
ditions such as a dilute gas.

The final step is to relateLη to a length-scaleintrinsic
to the system. This is necessary in order to be able to com-
pare system at vastly different length scales such as water,
interstellar dust and the QGP. The most obvious scale is
the inter-particle distanced = n1/3, which is well defined
for non-relativistic systems. For relativistic systems made
out of quasi-particles one can extract the inter-particle dis-
tance from the entropy densityd ∼ s1/3. If no quasi-particle
picture applies the typical length-scale of a energy-density
correlation function may serve the purpose, which would
also apply for other systems [8].

Thus we define the fluidity measureF as

F ≡
Lη
Ln

. (11)

with

Ln =
1

n
1
3

(12)

The resulting values forF for a large variety of substances
is shown in Fig.1.

Although the critical pressure and temperature as well
as the molar mass of the substances shown in Fig. 1 differ
by several orders of magnitude, their fluidity is quite sim-
ilar, especially just below the critical temperature. Thus,
we may conclude that “a good fluid is a good fluid”. The
spike atTc is due to the fact that the velocity of sound,cs,
vanishes at the critical point.

Since the fluidity measure seems to work rather well,
it will be interesting to see how the QGP compares with
well known substances such as water. This is shown in
Fig. 2. In order to estimate the fluidity measureF for the
QGP, we have used a parametrization of the viscosityη
by Hirano and Gyulassy [18]. The enthalpy-densityw =
ǫ + p and speed of soundcs are taken from recent lat-
tice results by Karsch et al [19] for 2+1 flavor QCD with
mπ ≈ 220MeV. As we mentioned before,Ln is estimated
by 1/(s/4kB)1/3 with the entropy density also taken from
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Fig. 1. Fluidity measureF = Lη/Ln versusT/Tc for fifteen dif-
ferent substances (H2, 4He, H2O, D2O, Ne, N2, O2, Ar, CO2,
Kr, Xe, C4H10, C8H18, C12H26, C4F8) at fixed critical pressure
P = Pc. The data are from [17]. The sharp peaks centered atTc

are due to the fact that the speed of sound vanishes atTc.
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Fig. 2. Comparison of the fluidity measure for various fluids
(see text for more details). The curves with question marks in-
dicate current estimates of the respective fluidity with possible
uncertainty, while the curves for Helium atPc and for water at
Pc,11Pc, 45Pc are from actual data.

[19]. For the strongly coupled AdS/CFT system, the shear
viscosity is well known to beη/s = 1/(4π) [4]. As we
also pointed out before, there is a short-range order at the
length scaleLn ∼ 1/T however the pre-factor is not accu-
rately determined. We simply useLn = 1/T as an estimate.
This gives the fluidityF =

√
3/(4π) ≈ 0.138. For the Cold

Fermi Atom gas we used available measurements for its
shear viscosity [20] and the speed of sound [21]. For details
see [8]. Finally we also plot the fluidity measure for super-
critical water atP = 11PC andP = 45Pc. Surprisingly we
find that the fluidity of super-critical water is better or at
least comparable with both the QGP and the strongly cou-
pled AdS/CFT system. Super-critical fluids are substances
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Fig. 3. Schematic isobaric contours (i.e. with constant pressure
along each line) on the QCDT − µ phase diagram with the
filled black circle indicating a possible position of thehypothet-
ical Critical-End-Point (CEP); the dashed blue horizontal short
line stretching from the CEP to the right is included to indicate
the T = TCEP boundary (see text for more details). The filled
red, blue and green circles indicate estimates of the initial (T, µ)
reachable at SPS, RHIC and LHC, respectively.

with both the pressure and the temperature above the crit-
ical point. They have the interesting property that they are
compressible but at the same time behave like fluids, as can
be seen from our plot. Since it is expected that the QCD
phase-diagram exhibits a critical point [22], it is naturalto
speculate if the QGP may be a super-critical fluid as well.
This may very well be the case, as demonstrated in Fig. 3,
where we show the estimated starting point for RHIC and
LHC fluid-dynamic evolutions together with equal pres-
sure line in the QCD phase diagram. We also indicate a
possible position of the QCD critical point, noting that its
existence and precise location is still very much unknown.
What would be the consequences if indeed the QGP were
a super-critical fluid. Obviously, the system created at the
LHC would then sit at even higher temperature and pres-
sure and thus should exhibit an even better fluidity. And
since the system at the LHC lives considerable longer one
would predict an even better description of the expansion
dynamics in terms of fluid-dynamics. To which extent this
is borne out by the recent measurement of elliptic flow
at the LHC is questionable. The dependence ofv2 on the
transverse momentum is essentially the same as observed
for RHIC collisions, whereas a better fluidity would pre-
dict a behavior more similar to ideal fluid-dynamics. How-
ever, before one can draw any firm conclusions, the effect
of jet-like correlations on the elliptic flow measurements at
higher transverse momentum needs to be understood [23].

Let us conclude this section with a few general re-
marks. First, the ratioη/s is not suitable to compare the flu-
idity of different substances. It may serve as a measure for
relativistic fluids far away from a phase-transition, where
the speed of sound is essentially a constant. Second, while
η/s may be small for a Quark Gluon Plasma, this does not
mean that the sheer viscosity itself is small. Indeed, using
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the conjectured lower limit ofη/s = 1/(4π) and inserting
the value for the entropy density of a QGP one arrives at

ηQGP ≃ 2× 109 Pa s≃ 1012ηWater (13)

which is probably the most “sticky” substance known. In
comparison, tar-pitch is estimated to haveηtar ≃ 108 Pa s.
Thus the QGP flows only so well because it has such a
large inertia. The large value of the shear-viscosity itself
could be exposed if one would be able to drag a small ob-
ject through the QGP. In this case Stokes’ formula for the
force required to move an object of radiusR at constant
speedu is

F = 6πRuη (14)

Even if we rescaled the size of the sphere by the inter-
particle distance,RQGP ≃ 10−6 RWater, the force required
to drag this sphere through the QGP would still be six or-
ders of magnitude larger than that for water

FQGP(RQGP) ≃ 106 FWater(RWater) (15)

A sticky substance indeed! Expressing this drag force in
terms of more conventional units,

FQGP ≃ 5Ru
GeV
fm2

(16)

so that a particle with radius ofR = 0.5 f m and a veloc-
ity of u = 0.5 would feel a drag force or energy loss of
F = dE/dx ≃ 1.25GeV/fm. To which extent this observa-
tion has any bearing on the observed energy loss of heavy
particle, remains to be seen.

3 Local parity violation in heavy ion
collisions?

As briefly discussed in the introduction, the Chiral Mag-
netic Effect (CME) leads to the separation of charges along
the direction of the magnetic field generated by the moving
ions. This charge separation can be viewed as a dipole in
momentum space as depicted in Fig. 4. In case of the CME,
in a given event the dipole vector will be either parallel or
anti-parallel to the magnetic field, depending on the pres-
ence of sphaleron- or anti-sphaleron transitions in the re-
action. Therefore, the expectation value of the momentum-
space dipole-moment vanishes,〈d〉 = 0, as does the expec-
tation value of the parity-odd scalar product with the mag-
netic field,〈Bd〉 = 0. However, since in case of charge sep-
aration〈d2〉 , 0 the presence of an event-by-event electric
dipole may be observable in thevariance of a parity-odd
operator, or equivalently, in charge-dependent two-particle
correlations. Of course, simple statistical fluctuations also
give rise to a finite〈d2〉 and suitable observables have to be
devised which are not sensitive to these statistical fluctua-
tions (for a discussion see [14]).

One way to obtain information about the presences of
the CME is to study charge dependent two-particle cor-
relations with respect to the reaction plane, as proposed

−

B

++++

−−

+

−−
p

py

x

Fig. 4. A schematic illustration of charge separation due to the
Chiral Magnetic Effect in an heavy ion event. The reaction plane
is aligned along thepx-direction on this case.

by Voloshin [10]. He suggested to measure the following
three-particle correlation,

〈cos(φi + φ j − 2φk)〉 (17)

for same-charge pairs (i, j = ++/−−) and opposite-charge
pairs (i, j = +−) with the third particle, denoted by indexk,
having any charge. If the correlation with the third particle
k is dominated by elliptic flow, then

〈cos(φi + φ j − 2φk)〉 = v2 〈cos(φi + φ j − 2ΨR.P.)〉 (18)

whereΨR.P. is the angle of the reaction plane, andv2 de-
notes the strength of the elliptic flow. Working in a frame
where the reaction plane is along the x-axis,ΨR.P. = 0, we
get

γ ≡ 1
v2
〈cos(φi + φ j − 2φk)〉 = 〈cos(φi + φ j)〉 (19)

The STAR collaboration has recently measured this cor-
relator and indeed has verified the above dependence of the
elliptic flow. Before we discuss the STAR measurement
in detail, however, let us see what to expect for this ob-
servable in case of the CME. As can be seen from Fig. 4,
the CME predicts same-side out-of-plane correlations for
same charges and back-to-back out-of-plane correlations
for opposite charges. This is best seen by rewriting the cor-
relatorγ as

γ = 〈cos(φi + φ j)〉 = 〈cos(φi) cos(φ j)〉
−〈sin(φi) sin(φ j)〉 (20)

In this representation the first term,〈cos(φi) cos(φ j)〉, mea-
sures the in-plane correlations while the second term,
〈sin(φi) sin(φ j)〉, measures the out-of-plane correlations.
The CME predicts that same-charge pairs have either both
an angle ofφi, φ j ≃ π/2 or φi, φ j ≃ 3π/2. In either case,
sin(φi) sin(φ j) ≃ 1. For opposite charges,φi ≃ π/2; φ j ≃
3π/2 or vice versa and sin(φi) sin(φ j) ≃ −1. Hence the
CME predicts

γCME, same−charge < 0

γCME, opposite−charge > 0, (21)
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Fig. 5. In-plane (red) and out-of-plane (black) correlations for
same-charge pairs as measured by the STAR collaboration [11,
12]. For details see [13].

and indeed this is what the STAR measurement shows.
So have we seen the CME and thus local parity violation
in an actual experiment? Not quite yet, because there is
an alternative scenario for which the correlatorγ may be
negative for same charge pairs and positive for opposite
charge pairs: Suppose we have same-chargein-plane back-
back correlations, i.e.φi ≃ 0 andφ j ≃ π or vice verse,
and opposite-chargein-plane same-side correlations, i.e.
φi, φ j ≃ 0 or φi, φ j ≃ π we obtain the same signs for
γ as above, but this time it is the〈cos(φi) cos(φ j)〉 term
which controls things. In other words, the correlatorγ is
not unique and we need another observable to determine
whether we are dealing with in-plane or out-of-plane cor-
relations. The obvious candidate is

δ ≡ 〈cos(φi − φ j)〉 = 〈cos(φi) cos(φ j)〉
+〈sin(φi) sin(φ j)〉 (22)

which represents thesum of the in-plane (〈cos(φi) cos(φ j)〉)
and out-of plane (〈sin(φi) sin(φ j)〉) correlations. With both
γ andδ we can extract both in-plane and out-of-plane cor-
relations separately

〈cos(φi) cos(φ j)〉 =
1
2

(δ + γ) (in − plane)

〈sin(φi) sin(φ j)〉 =
1
2

(δ − γ) (out− of − plane) (23)

Fortunately, STAR has measured the correlatorδ allow-
ing for a decomposition of the in-plane and out-of-plane
correlations. Those are shown in Fig. 5 for same-charge
pairs and in Fig. 6 for opposite charge pairs. The surpris-
ing result is that a) for same charge pairs the measured out
of-plane correlations are essentially zero, in contrast tothe
predictions from the CME. Instead STAR observes anin-
plane back-to-back correlation! This situation is illustrated
in Fig. 7. Opposite-charge pairs, on the other hand seem
to be equally correlated in both the in-plane and out-of-
plane direction. Obviously this is not quite in agreement
with the expectation from the CME. Especially the fact
that the same-charge pairs do not show any out-of-plane
correlations for all centralities is difficult to understand in
the context of the CME predictions. Naturally, there will be
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Fig. 6. In-plane (red) and out-of-plane (black) correlations for
opposite-charge pairs as measured by the STAR collaboration
[11,12]. For details see [13].
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Fig. 7. Schematic illustration of the actual STAR measurement
(red) together with the predictions from the Chiral Magnetic Ef-
fect (black) for same-charge pairs.

other effects contributing to the correlatorsγ andδ, such as
the coulomb interaction, transverse-momentum conserva-
tion[15], local charge conservation [24,25], cluster-decays
[26] etc. However, it is difficult to imagine how for all cen-
tralities these “background” contributions conspire to per-
fectly cancel the correlations expected from the CME. One
should note, however, that so far the measured correlation
are not understood in terms of conventional physics ei-
ther, possibly because many effects contribute, as indicated
above. Furthermore, it would be very useful to have a more
differential information on the above correlations. While
STAR has extracted the rapidity and transverse-momentum
dependence ofγ this information is not yet available forδ.
In addition, the value for the above correlations in sim-
ple proton-proton collisions would serve as an important
reference point. It may also be useful to develop alterna-
tive observables [14,27]. For example in [14] the direct
extraction of the magnitude and direction with respect to
the reaction plane of the momentum-space dipole-moment
has been proposed by introducing a charge-dependent Q-
vector analysis [1]. In [14] it was also demonstrated that
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simple two-particle correlations may mimic the effect of an
actual dipole, and only the careful analysis of the distribu-
tions of both the magnitude and the angle of the extracted
dipole was able to distinguish between an explicit dipole
and other correlations.

4 Conclusions

In this contribution we have discussed two aspects of the
physics of dense matter. On the one hand we presented a
universal measure for the fluidity of any substance and we
argued that the widely used measureη/s is not suitable for
a comparison between non-relativistic and relativistic flu-
ids. Given our new measure, the fluidity of the QGP is not
any better than that of water. We further pointed out, that
super-critical fluids exhibit an exceptionally good fluidity
and speculated to which extent the QGP may be consid-
ered a super-critical fluid. We also reminded ourselves that
the shear viscosity of the QGP is actually extremely large,
and that it only flows so well because of its high inertia,
i.e. energy density. This large viscosity could be revealed
by dragging an object through the QGP and the resulting
drag-force turns out to be of the same magnitude as the
energy loss extracted from the analysis of leading particle
suppression.

In the second part we critically examined the STAR
measurement of charge dependent two and three particle
correlations and their relevance for local parity violation.
We found that for same charge pairs STAR measures in-
plane back-to-back correlations in contradistinction to the
prediction from the Chiral Magnetic effect, which predicts
out-of plane same side correlations. Therefore, the jury on
the existence of local parity violation in heavy ion collision
is still out.
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