Interplay between chiral and deconfinement phase transitio ns
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Abstract. By using the dressed Polyakov loop or dual chiral condenastan equivalent order parameter
of the deconfinement phase transition, we investigate tladiae between the chiral and deconfinement phase
transitions at finite temperature and density in the frammkwbthree-flavor Nambu—Jona-Lasinio (NJL) model.
It is found that in the chiral limit, the critical temperagufor chiral phase transition coincides with that of the
dressed Polyakov loop in the wholE, (1) plane. In the case of explicit chiral symmetry breakinggs found that

the phase transitions are flavor dependent. For each fldntrdnsition temperature for chiral restoratigh

is smaller than that of the dressed Polyakov Iddpin the low baryon density region where the transition is a
crossover, and, the two critical temperatures coincidkerhigh baryon density region where the phase transition
is of first order. Therefore, there are two critical end psjine, Tog, andT&:, at finite density. We also explain
the feature offf = T2 in the case of 1st and 2nd order phase transitionsTand T2 in the case of crossover,
and expect this feature is general and can be extended Q@I theory.

1 Introduction Ref. [14-18], and also in review papers [19,20]. In re-
cent years, three lattice groups, MILC group [21], RBC-
Bielefeld group [22] and Wuppertal-Budapest group [23—

The interplay between chiral symmetry breaking and con- . : , :
finement as well as the chiral and deconfinement phasetzi(‘:’alht‘z\r/;e Sg?;[frdetshvevifr?lz;?rln%ns? dﬁcgigg?e?aerﬂtrﬂgzzggq;ﬁg
transitions at finite temperature and density are of contin- P phy q :

uous interests [1-9]. The two transitions are characterize Stirce-f}%meld—grzorplcg;e(l)lmg?jéh:ghe—tV\i%(z:Egl)céil);/?g/per_
by the breaking and restoration of chiral and center SYM- e Wu eftaI_-Buda est arou fana that for the caée of
metry, which are well defined in two extreme quark mass Ni = 2p+p1 there al?e th?ee tFrJansition temperatures. the
limits, respectively. In the chiral limit when the current trzfin;ition te,m erature for chiral restorationpﬁ uarks,
quark mass is zenm = 0, the chiral condensate is the order __ ", P n wua .
parameter for the chiral phase transition. When the current’c = 151(3)(3) MeV, the transition temperature for chi-
quark mass goes to infinity — co, QCD becomes pure ~ al restoration obquarkT¥® = 175(2)(4)MeV and the de-
gaugeSU (3) theory, which is center symmetric in the vac-  confinement transition temperatufé = 176(3)(4)MeV.
uum, and the usually used order parameter is the Polyakov~rom this result, we can read that the critical tempera-
loop [1]. tures for diferent transitions are ﬂiérent. According to
The relation between the chiral and deconfinement pha-the Wuppetal-Budapest group, this is the consequence of
se transitions has attracted more interest recently irystud the crossover nature.
ing the phase diagram at high baryon density region [10].
It is conjectured in Ref. [11] that in largd. limit, a con- In the framework of QCD fective models, there is
fined but chiral symmetric phase, which is called quarky- still no dynamical model which can describe the chiral
onic phase can exist in the high baryon density region. Itis symmetry breaking and confinement simultaneously. The
very interesting to study whether this quarkyonic phase canmain dfficulty of effective QCD model to include confine-
survive in real QCD phase diagram, and how it competesment mechanism lies in that it isfHcult to calculate the
with nuclear matter and the color superconducting phasePolyakov loop analytically. Currently, the popular mod-
[12]. (However, it is worthy of noticing that in Ref. [13], els used to investigate the chiral and deconfinement phase
it is found that at zero chemical potential, the lattice re- transitions are the Polyakov Nambu-Jona-Lasinio model
sults for the thermodynamical properties have a very mild (PNJL) [26—33] and Polyakov linear sigma model (PLSM)
dependence on the number of colors.) [34,35]. However, the shortcoming of these models is that
Lattice QCD at the current stage cannot go to very the temperature dependence of the Polyakov-loop potential
high baryon density. For zero chemical potential, previ- is putin by hand from lattice result, which cannot be self-
ous lattice results show that the chiral and deconfinementconsistently extended to finite baryon density. Recenfly, e
phase transitions occur at the same temperature, e.g, iforts have been made in Ref.[36] to derive a low-energy
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effective theory for confinement-deconfinementand chiral- canonical choice of anti-periodic boundary condition,
symmetry breakingestoration from first-principle. g
Recent investigations revealed that quark propagator Y(x.p) = e ¢(x.0), 1)
heat kernels can also act as an order parameter as the%
transform non trivially under the center transformation re
lated to deconfinement transition [37—39]. But the excit-
ing result is the behavior of spectral sum of the Dirac op- tra
erator under center transformation [38,40-42]. A new or- diti
der parameter, called dressed Polyakov loop has been de-
fined which can be represented as a spectral sum of the Zdp o —
Dirac operator [42]. It has been found the infrared part of Zh= —f Ze_m(lﬁl//)@ (2)
the spectrum particularly plays a leading role in confine- 0
ment [38]. This result is encouraging since it gives a hope wheren is the winding number.
to relate the chiral phase transition with the confinement-  Particular case af = 1 is called the dressed Polyakov
deconfinement phase transition. The order parameter forloop which transforms in the same way as the conventional
chiral phase transition is related to the spectral density o thin Polyakov loop under the center symmetry and hence
the Dirac operator through Banks-Casher relation [4]. The- is an order parameter for the deconfinement transition [42—
refore, both the dressed Polyakov loop and the chiral con-44]. It reduces to the thin Polyakov loop and to the dual
densate are related to the spectral sum of Dirac operator. of the conventional chiral condensate in infinite and zero
Behavior of the dressed Polyakov loop is mainly stud- quark mass limits respectively, i.e., in the chiral limmt—
ied in the framework of Lattice gauge theory [43,44]. Apart 0 we get the dual of the conventional chiral condensate and
from that, studies based on Dyson-Schwinger equationsin them — oo limit we have thin Polyakov loop [42-44].
[45-47] and PNJL model [48] have been carried out. In The Lagrangian of three-flavor NJL model [50] is given
those studies the role of dressed Polyakov loop as an ordess
parameter is discussed at zero chemical potential. In this _ _ _
paper, we show our results [49] of investigating the QCD L = y(iy*d, — my + GSZ {(¢Ta¢)2 + (¢iy5‘ra¢)2}
phase diagram at finite temperature and density by using a
the dressed Polyakov loop as an equivalent order parame- - -
ter in the Nambz-Jona-Lapsinio (NJﬁ) model . It is kpnown B K{Detf[lp(l +ys)y] + Detly(l - 75)"0]}' @)
that he NJL model lacks of confinement and the gluon dy- T
namics is encoded in a static coupling constant for four Wherey: = (u,d,s)” denotes the transpose of the quark
point contact interaction. However, assuming that we can fi€ld, andm = Diag(m,, ms, ms) is the corresponding mass
read the information of confinement from the dual chiral Matrix in the flavor spacera with @ = 1,---,Nf — 1 are
condensate, it would be interesting to see the behavior ofthe eight Gell-Mann matrices, and Reneans determi-
the dressed P0|yakov |00p in a scenario without any ex- nant in flavor space. The last term is the standard form of
plicit mechanism for confinement. the 't Hooft interaction, which is invariant und8iJ (3),. x
In this paper, we show the phase transitions in the two- SU(3)r x U(1)s symmetry, but breaks down tHga(1)
flavor and three-flavor NJL models i () plane in chi- ~ Symmetry. _ o
ral limit as well for small quark mass limit. This paperis The¢ dependent thermodynamic potential in the mean
organized as follows: We introduce the dressed Polyakov fi€ld level is given as following:
loop as an equivalent order parameter of confinement de- 2
confinement phase transition and the NJL model in Sec.“% = ZQ@Mf + ZGSZ (0,1 = HK(T)pu(0)9.a(0 g5,
2. Then in Sec.3, we show the results of two-flavor QCD f f
phase diagram i — u plane in the chiral limit and in (4)
the case of explicit chiral symmetry breaking, respecgivel .
We offer an analysis on the relation between the chiral and with
deconfinement phase transitions in Sec. 4. In Sec.5, we dp 1 _pE-
show the phase diagram at finite temperature and density QoM = —2Ne w[Ep,f + B|n(1+ e’
for three-flavor case. At the end, we give the conclusion 1 A
and discussion. + ,Eln(l + e—ﬁEE,f)], (5)

here 0< ¢ < 2r is the phase angle adis the inverse
temperature.

Dual quark condensatg, is then defined by the Fourier
nsform (w.r.t the phasg) of the general boundary con-
on dependent quark condensate [42—-44],

Where the sum is in the flavor spad&, = /p? + Mif

2 Dressed Polyakov loop and the NJL andE;f = Ep 1 £[u+i(¢—n)T], with the constituent quark
model mass

Mgi = M — 4G(0 )y + 2K(0 Yy, i{T o ko 6
We firstly introduce the dressed Polyakov loop. To do this > S PRk ©)
we have to consider@d(1) valued boundary condition for ~ where (, j, K) is the quark flavor indicesi(d, s), and{c )4, =
the fermionic fields in the temporal direction instead of the (¢ )y.
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3 Phase diagram for two-flavor case

0 T T T

-0.005
We firstly show the results in the two-flavor case and con- 001
sider the isospin symmetric limit, i.e, we takg = 2, _
K = 0 andm, = my in Eq.(3). The thermodynamic po- % 0.015
tential contains imaginary part. We take only the real part 8 -0.02
of the potential and the imaginary phase factor is not con- “5 25
sidered in this work. The mean field), is obtained by 8
minimizing the potential for each value @f € [0, 2x) Vo003 E
for fixed T andu. The conventional chiral condensate is -0.035
(o), = (Y¥):. The dressed Polyakov logp is obtained 0.04 | “
by integrating over the angle. The values of the parame- 0,045 T . L
tersA andGs are taken as.8315GeV and 3198GeV?, T 05 1 15 2
respectively.

We investigate phase transitions for two cases, i.e., in gm

the chiral limit and with explicit chiral symmetry breaking ~ Fig- 2. Angle variation of(c), for different values of tempera-
Fig. 1 and 2 show the behavior of the angle dependencdures gnd chemical potentials in the casern& 5.5MeV. The

of the general chiral condensate for various chemical po-Selid line corresponds & = 150MeV.u = 100MeV, dashed
tentials and temperatures for = 0 andm = 5.5MeV, line corresponds td = 250MeV, u = 100MeV, dash-dptted line
respectively. The four curves presented in each figure rep-C0/éSPonds t@ = 20MeV. » = 340MeV and dotted line corre-
resent two temperatures above and below the critical tem-SPONdS 1T = 40MeV, . = 340MeV .

perature for two particular values of the chemical poten-

tial. Same qualitative features have been found for both thejs consistent with the expectation of complete restoration
quark masses. The variation is symmetrical arogind of chiral symmetry in the chiral limit.

as reported in other studies [45,48].

0.03
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ol ] 0.025
0,005 | | ": ) 0.02
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Fig. 1. Angle variation of{(c), for different values of tempera-
tures and chemical potentials in the case of chiral limie $alid
line corresponds td = 150MeV, u = 100MeV, dashed line cor-
responds tal = 250MeV,u = 100MeV, dash-dotted line cor-
responds ta = 40MeV, u = 300MeV, and dot corresponds to
T = 150MeV, u = 300MeV.

Fig. 3. The conventional chiral condensatér), and the dressed
Polyakov loop¥; as functions of temperature forfiéirent values
of the chemical potentials in the chiral limit. Here(o), and2;
both are measured iGEV3]. From right to left the values of the
chemical potential are,@00 300MeV, respectively.

Fig. 3 and 4 show the behavior of the conventional chi-
Almost no variation with respect to angle is found for ral condensate-(c), and the dressed Polyakov lodp

low temperatures. As the temperature increases the variaat different chemical potentials as functions of tempera-
tion over the angle grows. We expect the absolute value ofture form = 0 andm = 5.5MeV, respectively. For both
the chiral condensate decreases with the increase of temeases, it is observed there are three temperature regions
perature. However, from the figure, this conventional be- for —(o), and X;. For —(o),, at smaller temperatures it
havior of the chiral condensate with temperature only per- remains constant at a value corresponding to the value of
sists up to a certain angle, beyond which the opposite be-the conventional chiral condensate in the vacuum, then it
havior is observed. The plateau aroupé x is more flat rapidly decreases in a small window of temperature and
aboveT, in case of zero current quark mass and its value eventually almost saturates to a lower value. The rapid de-
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Fig. 4. The conventional chiral condensatér), and the dressed  Fig. 5. Two-flavor phase diagram in the— u plane for the case
Polyakov loopX; as functions of temperature forftérent val- of chiral limit. The solid line is the critical line fo£}, and the
ues of the chemical potentials in the case of explicit clgyah- dashed line is the critical line for conventional chiral phdran-

metry breakingm = 5.5MeV and—(o),, 2; are measured in  sition. The solid circle indicates the critical point forici phase
[GeV3]. From right to left the values of the chemical potential transition.
are Q200 300MeV, respectively.

creasing occurs at fierent temperatures forftiérent val-
ues of the chemical potentials. On the other hand the be- 0.2
havior for the dressed Polyakov loop is just the opposite. It
remains almost zero for small temperatures and then rises
rapidly, finally saturates to a high value which varies very <
slowly with temperatures. The almost zero valu&pfor 8
small temperatures is due to the fact thatth@) bound- =
ary condition dependent general quark condensate nearly
does not vary with the anglefor small temperatures (see 0.08
Eq. 2). I
For finite quark mass, near the critical temperature re- 0.04
gion, both—(o), andX; change more slowly than those in
the case of chiral limit. 0 01 0.2 03
Fig. 5 and 6 show thd — u phase diagram for the
case ofm = 0 andm = 5.5MeV, respectively. The tran- W[Gev]
sition temperatures are calculated from the slope analysisFig. 6. Two-flavor phase diagram in tfie— u plane for the case
of the conventional chiral condensate), and the dressed  of m = 5.5MeV. The solid line is the critical line faEy, and the
Polyakov loop. The transition temperatures calculatehfro dashed line is the critical line for conventional chiral padran-
the conventional chiral condensate represent chiral phas@ition. The solid circle indicates the critical end point tiral
transition temperature. On the other hand the behavior ofphase transition.
the dressed Polyakov loop is supposed to indicate the de-
confinement transition temperature. In our present frame-
work confinement is not accounted for. However, if we gifferent in the low baryon density region. Thefdience
look at the curves presented in figure 3 and 4, they still however decreases from low to high chemical potential,
show an order parameter like behavior. We would like to and the two critical temperatures start to match around
point out here that for the same reason as stated abovgne critical end point for chiral phase transition. For zero
we are not concerned here with the order of the phasechemical potential and small current quark mass 5.5
transtion from the dressed Polyakov loop and all the com- pev, we find about 7MeV dference betweefi andT2,
ments about the order of the phase transition below areandTX < T2. Similar trend has been observed in another
with respect to the chiral phase transition only. study based on Dyson-Schwinger approach [45], where
Form = 0 case, we find almost exact matching for the they found chiral transition to occur about-220MeV be-
transition temperatures calculated from these two quanti-low the deconfinement transition. Though these studies are
ties in the whol€l —  plane as shown in Fig. 5. not a complete one and thesééiences may be due to the
For the case of finite quark mass = 5.5MeV, it is effects of crossover transition. As pointed out in [25] dur-
observed from Fig. 6 that the two critical temperatures are ing crossover, dferent observables are expected to behave

0.16

012

from¥, ——
from <0>,IT ——————
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differently and there is no way to define a unique crossover
temperature. 20 , .
We extend our study further to see what happens if we ol - -~ T<T/
increase the current quark mass further. We find at zero e 1T’
chemical potential, the fierence between the transition : :
temperatures calculated from dressed Polyakov loop and
conventional chiral condensate increases as we increase
the current quark mass (see Fig. 7). Initially th&etience
is zero for zero current quark mass but for= 200MeV
we find about 26MeV dference between the two temper-
atures. It is worthy of mentioning that this result is just
for illustrative purpose as there are limitation of usind-NJ
model with such a huge current quark mass.

3}
1

o
1
L

d<o>/dT [GeV]]
)

e
3]
1
<

L

00{ 7 1
0.0 05 10 15 2.0

Fig. 8. Temperature derivative of the general chiral condensate
d;’?‘” for m = 0 andu = O at three temperature cas@s< T,
T =T andT > T, whereT is the chiral transition tempera-

ture.

finite current quark mass) and the region with large values
of d(o)4/dT shrinks. Therefore, the integral in Eq. (7) i.e.
dX;/dT decreases as temperature increases. ldaljdT

gets its maximum aT¢ and the two transition tempera-
turesT2 andT¢ coincide in the case of second order chiral
phase transition.

Transition temperature [GeV]

Transition temperature from 2; —+—
Transition temperfi\ture from <g> --%--

0.18 L
0 50 100 150 200

Current quark mass [MeV]

Fig. 7. The critical temperaturegd andT2 for different current
masses.

4 The relation between T¢ and T2

¢

d<o> /dT [GeV?]

In the following, we dfer a possible understanding on the
simultaneity of the transition temperatures for 1st and 2nd
order chiral phase transitions and the appareffi¢@ince
between the two for the case of crossover.

As mentioned earlier the transition temperatures are
determined from the slope analysis of the conventional chi-
ral condensate and the dressed Polyakov loop. So let us
look at the temperature dgrlvatlve ofth_e general Ch'“’?"f con Fig. 9. Temperature derivative of the general chiral condensate
densatel(o),/dT as functions o, the integral on which Aoy

) o for m = 0 andu = 300MeV at three temperature cases:
daT
l%l\é(;s the temperature derivative of the Dressed Polyakov . T4 T = T andT > T.*, whereT,* is the chiral transition

temperature.

dr; Z"dq;gi » @)y
ar — Jo 2n ar - , , N ,

i , i Inthe case of first order chiral phase transition, the situ-
Fig. 8 showsd(c"),/dT at different temperatures in the  a4ion js more complicated. Due to the discontinuityf,
cases of second order chiral phase transitions. Arddnd 4t the first order chiral phase transition point, the temper-
large values ofl(o),/dT appear aroung = = and domi- 44,16 derivative of the dressed Polyakov loop can be ex-
nate the integral in Eq. (7). BeloW¢ , d(c")4/dT around pressed as
¢ = m increases monotonously as temperature increases.

As aresultd>;/dT increases. Abové?, d(c),/dT in the dx; do oid d(o)y Cospc doc

center region becomes zero (or very smallin the case with g7 =~ ), 27 dT n A<‘7>Cd_-r’ (8)

()
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where, the first term is determined by the regular behavior phase transition in chiral limit. The fierence is that, the

of d(o)4/dT (see Fig.9), the second term is duefter)., d%(o)4/dT? in the center region (see the minimum in Fig.
the jump of(c)4 at the first order phase transition point at 10), is suppressed below, approaches zero a* and

¢ = ¢c. WhenT < T¢, the second term vanishes. Now changes its sign abov&¥. ForT < T¢¥, thed*(o),/dT?

we consider two limiting cases. First, in the case of a weak around the two maximums dominate the integral in Eq.(7)
first order phase transitioal{c ) is small andd(c),/dT and d?X;/dT? does not change its sign. Aboug!, the
aroundy = rris large, as showed in Fig.9. So the first term negative part around the minimum cancels the contribu-
dominates the result of Eq. (8) and gives the similar result tions from the maximums, and up to a certain tempera-
as that in the case of a second order chiral phase transitionture T2, this cancelation leads to the zero of the integral in
Second, in the case of a strong first order chiral phase tran£g.(9). In all, the zero point af’°X;/dT? comes from the
sition, 4¢{co")¢ is large andi{c),/dT is small. So the second negative contribution of the minimum at > T, so the
term dominates the result of Eq. (8). Th%%\ is strongly transition temperature related with the dressed Polyakov
dependent on the detailed informationdgf./dT. Our nu- loop must be higher than the chiral transition temperature,
merical results show thalp./dT decreases as temperature e TP > T

increases, and so the second term also gives a decreasing

contribution. In all, it is clear thatlx;/dT gets its maxi-

mum atT{, i..e.Té” andT{ coincide in the case of aweak 5 phage diagram for three-flavor case

first order chiral phase transition due to remnants of second

order chiral phase transition. The coincidence in the case _ _

of a general first order chiral phase transition is supported V& now consider the phase diagram for three-flavor case,

by our numerical results and can be generally expected. and the parameters are taken from Ref.[51, 52]:

mg[MeV] | myMeV] GsA? KAS
0

0.4 Chiral-limit 0 1.926 | 12.36
03 finite-mass 5.5 140.7 1.918 12.36
_ Table 1. Two sets of parameters in 3-flavor NJL model: the cur-
% 0.2 rent quark massn, for up and down quark anohs for strange
0] quark, coupling constan€ andK, with a spatial momentum cut-
~ 01 off A = 6023 MeV.
5
® 0
° 01 - In the chiral limit, i.e, for the case ofy, = my = mg =
S 0 case, we find almost exact matching for the transition
0.2 temperatures calculated from these two quantities in the
whole T — u plane as shown in Fig. 11. The chiral phase
03 L L L transition is of 1st order in the whole— u plane.
0 05 1 15 2 For the case of finite quark masg = my = 5.5MeV
andms = 1407MeV, it is observed from Fig. 12 that the
on i ; 2"
) o ) i the chiral and deconfinement phase transitions are flavor
Fig. 10. Second derivative of the general chiral condensg%?é dependent. For the degenerate lighti quarks, the result
for m = 55MeV andu = 0 at three temperature casds: < of phase transitions are similar to that in Fig. 6. The caitic
tg;'pzr;urg andT > T, whereTc" is the chiral transition e mperatures of chiral and deconfinement phase transitions

have very small dference in the low baryon density re-
gion when the transition is of crossover, and thigedence
For the case with finite quark mass and small chemi- Vanishes at the critical end point. Here the CEP is located

i > 4 ud s
cal potential, we have no phase transitions but crossoverat (Tcgp: Hegp) = (91MeV,315MeV), which is diferent
So let us consider the second temperature derivative of theffom Fig. 6. This diference comes from: 1)ftierent model

dressed Polyakov loop parameters have been used, 2) the coupling aqfiark to
u, d quark contributes one extra term in the thermodynam-
d?>y Zdy s d¥(o)y ical potential comparing with the pure two-flavor case. For
arz ~ ~ 0 52 dT2 ©) the relative heavys quark, it is found that this quark has

separate phase transition lines. At low baryon density, the
whose zero point determines the transition temperdtfice  variation of s quark condensate in the crossover region is
Fig. 10 shows the second derivatives of the general chiralso difused that it is not possible to identify the crossover
condensate?(c),/dT? at three temperature casés: < temperature. When density increases, the crossover tem-
TX, T =T& andT > T, whereT is the chiral transi- peratures for chiral and deconfinement can tiectively
tion temperature. Similar to our previous observatiomdar ~ extracted and still shows the relation B < T2. These
values ofd?(c),/dT? appear aroung = r (see the two two critical temperatures af quark coincide at the critical
maximums in Fig. 10), as remnants of the second orderend point T&cp. taep) = (75MeV, 445MeV).
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gion where the transition is a crossover. With the increase
of current quark mass theftBrence between the two crit-
ical temperatures is found to be increasing. However, the
180 ] two critical temperatures coincide in the high baryon den-
i sity region where the phase transition is of first order. For
three-flavor case, it is observed that there are two critical
end points in theT, ) phase diagram.
i From symmetry analysis, the dressed Polyakov loop
can be regarded as an equivalent order parameter of de-
confinement phase transition for confining theory. In the
. NJL model, the gluon dynamics is encoded in a static cou-
pling constant for four point contact interaction. Since in
this work we have included only quark degrees of free-
dom, a quantitative comparison will not match with other
results. But the interesting fact is that the qualitativa-fe
tures (angle variation, temperature variation) of the skds
Polyakov loop remains the same. Moreover, we expect that
Fig. 11. Three-flavor phase diagram in tffle— u plane for the  jndependent of the input of gluedynamics to the quark prop-
case of chira] Iimit. The §q|id I[ne is the criticql line fdﬁ, and agator, it is a general feature 6§ = TCD in the case of 1st
g\:ng;zr:fd line is the critical line for conventional chiphbhse and 2nd order p_hase tra_n5|_t|ons, and< Tg_) in the cgse
of crossover, which qualitatively agrees with the lattiee r
sult in Ref. [25]. This might indicate that for full QCD, in
the crossover case, there exists a small region where chiral
250 - - - - symmetry is restored but the color degrees of freedom are
still confined. This result should be checked in other ef-
s fective models, e.g. in the framework of Dyson-Schwinger
equations (DSE).
The (T, u) phase diagram with three flavors and with
Ua(1) anomaly as well as diquark condensate will be stud-
ied in the near future.
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