Modification of the near-side jet peak at $\sqrt{s_{NN}} = 2.76$ TeV Pb–Pb collisions measured by the ALICE detector

Mónika Kőfaragó

CERN ALICE, Utrecht University

6th May 2016 Wigner Theoretical Physics Seminar

The current ALICE detector

- Current ITS has six layers
- Only two layers equipped with pixel detectors

Motivations and strategy:

- \bullet High precision measurements of heavy flavor and charmonia at low $p_{\rm T}$ and low-mass dileptons
 - cannot be selected by a hardware trigger
- Record large minimum bias samples
 - read out all Pb–Pb collisions at 50 kHz
- Integrated luminosity of 10 nb⁻¹ in Pb–Pb (plus pp and p–A data)
 - factor 100 in statistics compared to LHC Run 1 and 2 (2009 2019)

Motivations and strategy:

- \bullet High precision measurements of heavy flavor and charmonia at low $p_{\rm T}$ and low-mass dileptons
 - cannot be selected by a hardware trigger
- Record large minimum bias samples
 - read out all Pb–Pb collisions at 50 kHz
- Integrated luminosity of 10 nb⁻¹ in Pb–Pb (plus pp and p–A data)
 - factor 100 in statistics compared to LHC Run 1 and 2 (2009 2019)

Upgrades:

- New Inner Tracking System (ITS)
- New Muon Forward Tracker (MFT)
- Smaller beam pipe
- Online and offline system

- Electronics and readout of the Time-Projection Chamber (TPC)
- Readout electronics of several detectors
- New Fast Interaction Trigger (FIT)

Design objectives for the upgrade of the ITS

- Improve impact parameter resolution by a factor of 3(5) in r- φ (z) at $p_{\rm T}=500~{\rm MeV}/c$
 - $\bullet\,$ First layer closer to interaction point: 39 mm \rightarrow 23 mm
 - $\bullet\,$ Material budget: $\sim 1.14\%$ $X_0 \rightarrow 0.3\%$ X_0 for the three innermost layers
 - Pixel size: $50\mu m \times 425\mu m \rightarrow 29 \ \mu m \times 27 \ \mu m$

CERN-LHCC-2013-24

J. Phys. G(41) 087002

Modification of the near-side jet peak

4 / 11

Design objectives for the upgrade of the ITS

- Improve impact parameter resolution by a factor of 3(5) in r- φ (z) at $p_{\rm T}=500~{\rm MeV}/c$
 - $\bullet\,$ First layer closer to interaction point: 39 mm \rightarrow 23 mm
 - $\bullet\,$ Material budget: $\sim 1.14\%$ $X_0 \rightarrow 0.3\%$ X_0 for the three innermost layers
 - \bullet Pixel size: $50 \mu m$ \times $425 \mu m$ \rightarrow 29 μm \times 27 μm
- \bullet Improve tracking efficiency and $p_{\rm T}$ resolution at low $p_{\rm T}$
 - 6 layers \rightarrow 7 layers
 - All layers pixel chips (instead of strip, drift and pixel layers)

CERN-LHCC-2013-24

J. Phys. G(41) 087002

Design objectives for the upgrade of the ITS

- Improve impact parameter resolution by a factor of 3(5) in r- φ (z) at $p_{\rm T} = 500 \ {\rm MeV}/c$
 - $\bullet\,$ First layer closer to interaction point: 39 mm \rightarrow 23 mm
 - $\bullet\,$ Material budget: $\sim 1.14\%$ $X_0 \rightarrow 0.3\%$ X_0 for the three innermost layers
 - \bullet Pixel size: $50 \mu m$ \times $425 \mu m$ \rightarrow 29 μm \times 27 μm
- Improve tracking efficiency and $p_{\rm T}$ resolution at low $p_{\rm T}$
 - 6 layers \rightarrow 7 layers
 - All layers pixel chips (instead of strip, drift and pixel layers)
- Fast readout (present ITS is limited to 1 kHz)
 - Pb-Pb: up to 100 kHz
 - pp: several 100 kHz
- Fast insertion/removal for yearly maintenance

CERN-LHCC-2013-24

J. Phys. G(41) 087002

4 / 11

Requirements for the upgrade of the ITS

- 7 layers of pixel sensors (r = 23 - 400 mm)
- $\bullet~10~m^2$ of silicon with 12.5 Gpixels
- $|\eta| < 1.22$ for tracks from 90% of the most luminous region

Requirements for the upgrade of the ITS

- 7 layers of pixel sensors (r = 23 - 400 mm)
- $\bullet~10~m^2$ of silicon with 12.5 Gpixels
- $|\eta| < 1.22$ for tracks from 90% of the most luminous region

Parameter	Inner barrel	Outer barrel
Silicon thickness	50 µm	100 µm
Spatial resolution	5 μm	10 µm
Power density	$< 300 \text{ mW/cm}^2$	$< 100 \text{ mW/cm}^2$
Event resolution	< 30µs	
Detection efficiency	> 99%	
Fake hit rate	$< 10^{-6}$ per event per pixel	
Average track density	$15 - 35 \text{ cm}^{-2}$	$0.1 - 1 \text{ cm}^{-2}$
TID radiation *	2700 krad	100 krad
NIEL radiation *	$1.7\times 10^{13}~1~\text{MeV}~\text{n}_{\text{eq}}/\text{cm}^2$	$10^{12} \ 1 \ { m MeV} \ { m n_{eq}/cm^2}$

* Including a safety factor of 10

Technology choice

Monolithic Active Pixel Sensors using TowerJazz 0.18 μm CMOS imaging process

- \bullet High-resistivity (> 1k\Omega cm) epitaxial layer on p-type substrate
- Quadruple well process: deep PWELL shields NWELL of PMOS transistors, allowing for full CMOS circuitry within active area
- Moderate reverse substrate biasing is possible, resulting in larger depletion volume around NWELL collection diode

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

- First prototype with final size (15 mm × 30 mm)
- $\bullet~512~\times~1024$ pixels
- $\bullet\,$ Pixels are 28 μm \times 28 μm
- Digital readout with priority encoder
- Four sectors with different pixel geometries and reset mechanisms

Characterization in test beam

Characterization in test beam

Test beam

- Tracking is done by a stack of 7 layers of pALPIDE-1
- Readout and analysis is done using the EUDAQ/EUTelescope framework *
- Measurement of detection efficiency and spatial resolution

*https://eutelescope.web.cern.ch

• Efficiency is well above 99%

- Efficiency is well above 99%
- Noise occupancy is below 10^{-6} hits/event/pixel above ~ 140 electrons

- Efficiency is well above 99%
- Noise occupancy is below 10^{-6} hits/event/pixel above ~ 140 electrons
- \bullet Resolution is below 5 μm with a large operational margin

- Efficiency is well above 99%
- Noise occupancy is below 10^{-6} hits/event/pixel above ~ 140 electrons
- \bullet Resolution is below 5 μm with a large operational margin
- Average cluster size is above two pixels on average

- Efficiency is well above 99%
- Noise occupancy is below 10^{-6} hits/event/pixel above ~ 140 electrons
- Resolution is below 5 μm with a large operational margin
- Average cluster size is above two pixels on average
- After irradiation:
 - Efficiency and resolution does not change
 - Cluster size slightly smaller
 - Noise occupancy slightly higher

• Cluster size distribution as function of impinging point of tracks within pixel

- Average cluster size is
 - largest at the corner of pixels
 - smallest at the center of pixels

• Cluster size distribution as function of impinging point of tracks within pixel

- Average cluster size is larger at low I_{thr}
- Average cluster size changes less within a pixel at high Ithr

Summary and outlook

- The current ITS will be replaced in 2019-2020
- 7 layers of monolithic pixel sensors will be used
- Results from first full-scale prototype shown:
 - All requirements are fulfilled
 - Large operational margin
 - $\bullet\,$ Satisfactory results also after irradiation with 10^{13} 1 MeV n_{eq}/cm^2
- Changes in newer prototypes:
 - All features needed for module integration added
 - Analog front-end optimization
 - Multi-event buffers added
 - Noise occupancy lowered by orders of magnitude
- Final chip is submitted soon

Thank you for your attention!

