Tensor
Square Representations of Lie Algebras Or:
Symmetry Decides Simulability

Tensor Square Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

Joint work with R. Zeier, T. Schulte-Herbrüggen and D. Burgarth Wigner Research Centre for Physics Theoretical Physics Seminar, 3 April 2015

Representations of compact groups and compact Lie algebras

Tensor

Square
Represen-
tations of Lie
Algebras
Or:
Symmetry Decides Simulability

- The representation theory of compact groups is a well-understood subject into which one can embed another classic field, the representations of compact Lie algebras. One hears usually the following statements:
- all the questions concerning the representation theory of semi-simple (and compact) Lie algebras are already solved.
- There are no interesting and 'natural' properties of the representation theory of compact Lie algebras that makes it very distinct from that of compact groups.
- All the group theory needed for physics have been already worked out. Group theory has no more practical importance for physics. Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lillian Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)

Representations of compact groups and compact Lie algebras

Tensor
Square Representations of Lie
Algebras
Or:
Symmetry
Decides Simulability

- The representation theory of compact groups is a well-understood subject into which one can embed another classic field, the representations of compact Lie algebras.
- all the questions concerning the representation theory of semi-simple (and
compact) Lie algebras are already solved.
- There are no interesting and 'natural' properties of the representation
theory of compact Lie algebras that makes it very distinct from that of
compact groups.
- All the group theory needed for physics have been already worked out.
Group theory has no more practical importance for physics.
Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lillian
Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)

Representations of compact groups and compact Lie algebras

Tensor
Square Representations of Lie
Algebras
Or:
Symmetry
Decides Simulability

Zoltán Zimborás

- The representation theory of compact groups is a well-understood subject into which one can embed another classic field, the representations of compact Lie algebras. One hears usually the following statements:
> - all the questions concerning the representation theory of semi-simple (and compact) Lie algebras are already solved
> - There are no interesting and 'natural' properties of the representation theory of compact Lie algebras that makes it very distinct from that of compact groups.
> - All the group theory needed for physics have been already worked out Group theory has no more practical importance for physics. Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lillian Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)

Representations of compact groups and compact Lie algebras

Tensor
Square Representations of Lie
Algebras
Or:
Symmetry Decides Simulability

Zoltán Zimborás

- The representation theory of compact groups is a well-understood subject into which one can embed another classic field, the representations of compact Lie algebras. One hears usually the following statements:
- all the questions concerning the representation theory of semi-simple (and compact) Lie algebras are already solved.
- There are no interesting and 'natural' properties of the representation theory of compact Lie algebras that makes it very distinct from that of compact groups.

All the group theory needed for physics have been already worked out. Group theory has no more practical importance for physics. Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lillian Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)

Representations of compact groups and compact Lie algebras

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- The representation theory of compact groups is a well-understood subject into which one can embed another classic field, the representations of compact Lie algebras. One hears usually the following statements:
- all the questions concerning the representation theory of semi-simple (and compact) Lie algebras are already solved.
- There are no interesting and 'natural' properties of the representation theory of compact Lie algebras that makes it very distinct from that of compact groups.
All the group theory needed for physics have been already worked out. Group theory has no more practical importance for physics. Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lilliar Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)

Representations of compact groups and compact Lie algebras

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- The representation theory of compact groups is a well-understood subject into which one can embed another classic field, the representations of compact Lie algebras. One hears usually the following statements:
- all the questions concerning the representation theory of semi-simple (and compact) Lie algebras are already solved.
- There are no interesting and 'natural' properties of the representation theory of compact Lie algebras that makes it very distinct from that of compact groups.
- All the group theory needed for physics have been already worked out. Group theory has no more practical importance for physics.

```
Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lillian
```

Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)

Representations of compact groups and compact Lie algebras

Tensor
Square Representations of Lie
Algebras
Or:
Symmetry
Decides Simulability

Zoltán
Zimborás

- The representation theory of compact groups is a well-understood subject into which one can embed another classic field, the representations of compact Lie algebras. One hears usually the following statements:
- all the questions concerning the representation theory of semi-simple (and compact) Lie algebras are already solved.
- There are no interesting and 'natural' properties of the representation theory of compact Lie algebras that makes it very distinct from that of compact groups.
- All the group theory needed for physics have been already worked out. Group theory has no more practical importance for physics. Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lillian Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)

Representations of compact groups - basic properties

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides Simulability

Zoltán Zimborás

- Any continuous representation of a compact group is equivalent to a unitary representation.
- Any continuous irreducible representation (irrep) of a compact group is finite dimensional.
- Any continuous representation of a compact group is completely reducible.
- For any two irreps can define through the Clebsch-Gordan series (or the direct-product fusion rules)

The representation ring of the compact group. (More precisely it is a ring with a basis/ordered ring/rig/semi-ring.)

- Given $H<G$ (H is a closed subgroup of the compact group G), and an irrep λ^{G} of G,

where N_{k} are called restriction fusion rules.

Representations of compact groups - basic properties

Tensor
Square
Represen-
tations of Lie
Algebras Or:
Symmetry
Decides Simulability

Zoltán
Zimborás

- Any continuous representation of a compact group is equivalent to a unitary representation.
- Any continuous irreducible representation (irrep) of a compact group is finite dimensional
- Ány continuous representation of a compact group is completely reducible.
- For any two irreps can define through the Clebsch-Gordan series (or the direct-product fusion rules)

The representation ring of the compact group. (More precisely it is a ring with a basis/ordered ring/rig/semi-ring.)

- Given $H<G$ (H is a closed subgroup of the compact group G), and an irrep λ^{G} of G,

Representations of compact groups - basic properties

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- Any continuous representation of a compact group is equivalent to a unitary representation.
- Any continuous irreducible representation (irrep) of a compact group is finite dimensional.
- Any continuous representation of a compact group is completely reducible.
- For any two irreps can define through the Clebsch-Gordan series (or the direct-product fusion rules)

The representation ring of the compact group. (More precisely it is a ring with a basis/ordered ring/rig/semi-ring.)

- Given $H<G(H$ is a closed subgroup of the compact group $G)$, and an irrep λ^{G} of G,
where N_{k} are called restriction fusion rules.

Representations of compact groups - basic properties

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- Any continuous representation of a compact group is equivalent to a unitary representation.
- Any continuous irreducible representation (irrep) of a compact group is finite dimensional.
- Any continuous representation of a compact group is completely reducible.
- For any two irreps can define through the Clebsch-Gordan series (or the direct-product fusion rules)

The representation ring of the compact group. (More precisely it is a ring with a basis/ordered ring/rig/semi-ring.)

- Given $H<G$ (H is a closed subgroup of the compact group G), and an irrep λ^{G} of G,
where N_{k} are called restriction fusion rules

Representations of compact groups - basic properties

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- Any continuous representation of a compact group is equivalent to a unitary representation.
- Any continuous irreducible representation (irrep) of a compact group is finite dimensional.
- Any continuous representation of a compact group is completely reducible.
- For any two irreps can define through the Clebsch-Gordan series (or the direct-product fusion rules)

$$
\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}
$$

The representation ring of the compact group. (More precisely it is a ring with a basis/ordered ring/rig/semi-ring.)

- Given $H<G$ (H is a closed subgroup of the compact group G), and an irrep λ^{G} of G,
where N_{k} are called restriction fusion rules.

Representations of compact groups - basic properties

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- Any continuous representation of a compact group is equivalent to a unitary representation.
- Any continuous irreducible representation (irrep) of a compact group is finite dimensional.
- Any continuous representation of a compact group is completely reducible.
- For any two irreps can define through the Clebsch-Gordan series (or the direct-product fusion rules)

$$
\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}
$$

The representation ring of the compact group. (More precisely it is a ring with a basis/ordered ring/rig/semi-ring.)

- Given $H<G$ (H is a closed subgroup of the compact group G), and an irrep λ^{G} of G,

$$
\left.\lambda^{G}\right|_{H} \cong \oplus_{k} N_{k} \lambda_{k}^{H}
$$

where N_{k} are called restriction fusion rules.

Dynkin solved all representation theoretic problems concerning semi-simple Lie algebras...

Tensor
Square
Represen-
tations of Lie
Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- A baby version of the famous $\mathbf{P} \neq$ NP conjecture is Valiant's conjecture VP \neq VNP.
- Consider $\mathfrak{h}=\mathfrak{s u}\left(d_{1}\right) \oplus \mathfrak{s u}\left(d_{2}\right)$ and $\mathfrak{g}=\mathfrak{s u}\left(d_{1} d_{2}\right)$ with the canonical embedding $\mathfrak{h}<\mathfrak{g}$, and the restriction fusion rules
- Solving VP \neq VNP is equivalent to deciding whether there exists a polynomial algorithm (in d_{1}, d_{2}, and the dimension of $\lambda^{\mathfrak{g}}$) for obtaining the above N_{k}.
- This question gave rise to a whole field of modern mathematics called Geometric Complexity Theory, with many subquestions, e.g., is there a polynomial algorithm for deciding $N_{k} \neq 0$. concerning semi-simple Lie algebras...

Tensor
Square Representations of

- A baby version of the famous $\mathbf{P} \neq$ NP conjecture is Valiant's conjecture VP \neq VNP.
- Consider $\mathfrak{h}=\mathfrak{s u}\left(d_{1}\right) \oplus \mathfrak{s u}\left(d_{2}\right)$ and $\mathfrak{g}=\mathfrak{s u}\left(d_{1} d_{2}\right)$ with the canonical embedding $\mathfrak{h}<\mathfrak{g}$, and the restriction fusion rules

$$
\lambda_{\mathfrak{h}}^{\mathfrak{g}} \cong \oplus_{k} N_{k} \lambda_{k}^{\mathfrak{h}}
$$

- Solving VP \neq VNP is equivalent to deciding whether there exists a polynomial algorithm (in d_{1}, d_{2}, and the dimension of $\lambda^{\mathfrak{g}}$) for obtaining the above N_{k}.
- This question gave rise to a whole field of modern mathematics called Geometric Complexity Theory, with many subquestions, e.g., is there a polynomial algorithm for deciding $N_{k} \neq 0$.

The representation rings of compact Lie algebras have no distinct features...

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- Consider the dihedral and quaternion groups, D_{4} and Q_{8}
D_{4}

Q_{8}

D_{4}	1	1	2	2	2		Q	1	2	2	2
	1	z	r	s	t		1	-1	i	j	k
1	1	1	1	1	1		1	1	1	1	1
1											
λ_{r}	1	1	1	-1	-1		λ_{i}	1	1	1	-1
λ_{s}	1	1	-1	1	-1		λ_{j}	1	1	-1	1
λ_{t}	1	1	-1	-1	1		λ_{k}	1	1	-1	-1
δ	2	-2	0	0	0		ϵ	2	-2	0	0
ρ	8	0	0	0	0		ρ	8	0	0	0

- D_{4} and Q_{8} are not isomorphic, but isomorphic isomorphic representation rings.
- Handelman's theorem: the representation ring $\left(\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}\right)$ uniquely determines a semi-simple Lie algebra/simply connected compact Lie group. (J. R. McMullen, Math. Z. 185539 (1984); D. Handelman, Int. J., 459 (1993); D. Kazdhan, M. Larsen Y. Varshavski, Algebra \& Number Theory 8243 (2014).). The theorem was proved using the classification of semi-simple Lie algebras and their 乾presentatiens. 三

The representation rings of compact Lie algebras have no distinct features...

Tensor
Square Representations of Lie Algebras Or:
Symmetry Decides Simulability

Zoltán Zimborás

- Consider the dihedral and quaternion groups, D_{4} and Q_{8}
D_{4}

Q_{8}

D_{4}	1	1	2	2	2
	1	z	r	s	t
1	1	1	1	1	1
λ_{r}	1	1	1	-1	-1
λ_{s}	1	1	-1	1	-1
λ_{t}	1	1	-1	-1	1
δ	2	-2	0	0	0
ρ	8	0	0	0	0

Q	1	1	2	2	2
	1	-1	i	j	k
1	1	1	1	1	1
λ_{i}	1	1	1	-1	-1
λ_{j}	1	1	-1	1	-1
λ_{k}	1	1	-1	-1	1
ϵ	2	-2	0	0	0
ρ	8	0	0	0	0

- D_{4} and Q_{8} are not isomorphic, but isomorphic isomorphic representation rings.
- Handelman's theorem: the representation ring $\left(\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}\right)$ uniquely determines a semi-simple Lie algebra/simply connected compact Lie group. (J. R. McMullen, Math. Z. 185539 (1984); D. Handelman, Int. J., 459 (1993); D. Kazdhan, M. Larsen, Y. Varshavski, Algebra \& Number Theory 8243 (2014).). The theorem was proved using the classification of semi-simple Lie algebras and their 齿presentatiens.

The representation rings of compact Lie algebras have no distinct features...

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- Consider the dihedral and quaternion groups, D_{4} and Q_{8}
D_{4}

Q_{8}

D_{4}	1	1	2	2	2
	1	z	r	s	t
1	1	1	1	1	1
λ_{r}	1	1	1	-1	-1
λ_{s}	1	1	-1	1	-1
λ_{t}	1	1	-1	-1	1
δ	2	-2	0	0	0
ρ	8	0	0	0	0

Q	1	1	2	2	2
	1	-1	i	j	k
1	1	1	1	1	1
λ_{i}	1	1	1	-1	-1
λ_{j}	1	1	-1	1	-1
λ_{k}	1	1	-1	-1	1
ϵ	2	-2	0	0	0
ρ	8	0	0	0	0

- D_{4} and Q_{8} are not isomorphic, but isomorphic isomorphic representation rings.
- Handelman's theorem: the representation ring $\left(\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}\right)$ uniquely determines a semi-simple Lie algebra/simply connected compact Lie group. (J. R. McMullen, Math. Z. 185539 (1984); D. Handelman, Int. J., 459 (1993); D. Kazdhan, M. Larsen, Y. Varshavski, Algebra \& Number Theory 8243 (2014).). The theorem was proved using the classification of semi-simple Lie algebras and their representations.

The representation rings of compact Lie algebras have no distinct features...

Tensor
Square
Representations of Lie
Algebras Or: Symmetry Decides Simulability

Zoltán

 Zimborás- Consider two irreps λ, μ of a compact group G, then $\|\lambda \times \mu\|_{2}=\|\lambda \times \bar{\mu}\|_{2}$ holds. Furthermore, $\|\lambda \times \mu\|_{1}=\|\lambda \times \bar{\mu}\|_{1}$ holds if G is simply connected and compact. (R. Coquereaux, J.-B. Zuber J. Phys. A 44 295208 (2011); Sigma 9039 (2013); J. Phys. A: Math. Theor. 47455202 (2014))

On sums of tensor and fusion multiplicities

Robert Coquereaux
Centre de Physique Théorique (CPT),
CNRS UMR 6207
Luminy, Marseille, France
Jean-Bernard Zuber
Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589 and Université Pierre et Marie Curie - Paris 6,

4 place Jussieu, 75252 Paris cedex 05, France

Abstract

Abstract

The total multiplicity in the decomposition into irreducibles of the tensor product $\lambda \otimes \mu$ of two irreducible representations of a simple Lie algebra is invariant under conjugation of one of them $\sum_{\nu} N_{\lambda, \mu}{ }^{\prime \prime}=\sum_{\nu} N_{X_{\mu}}{ }^{\nu}$. This also applies to the fusion multiplicities of affine algebras in conformal WZW theories. In that context, the statement is equivalent to a property of the modular S matrix, $v \mathrm{iz} \Sigma(\kappa):=\sum_{\lambda} S_{\lambda \kappa}=0$ if κ is a complex representation. Curiously, this vanishing of $\Sigma(\kappa)$ also holds when κ is a quaternionic representation. We provide proofs of all these statements. These proofs rely on a case-by-case analysis, maybe overlooking some hidden symmetry principle. We also give various illustrations of these properties in the contexts of boundary conformal field theories, integrable quantum field theories and topolcgical field theories.

Of course the Theorem is non-trivial only in cases where \mathfrak{g} has complex representations, i.e. $\mathfrak{q}=A_{n}$, $D_{n=2 s+1}$ or E_{6}. Although this looks like a classroom exercise in group theory, we couldn't find either a reference in the literature or a simple and compact argument and we had to resort to a case by case analysis, see Sect 2 below. Note also that this property is not a trivial consequence of the general representation theory of groups; in particular, it does not hold in general in finite groups, see Sect 7 below for counterexamples based on finite subgroups of $\mathrm{SU}(3)$.

The representation rings of compact Lie algebras have no distinct features...

Tensor

Square
Represen-
tations of

- Consider two irreps λ_{i}, λ_{j} of a compact group G, and the Clebsch-Gordan

 series $\lambda_{i} \times \lambda_{i} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}$. The relation $N_{i j}^{k} f_{i} f_{i} f_{k}>0$ holds if G is simply connected. (E. P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)Zoltán Zimborás

- Consider the irreps $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and $\mu_{1}, \mu_{2}, \ldots, \nu_{m}$ of a simply connected compact group G. If $\lambda_{1} \times \lambda_{2} \times \ldots \times \lambda_{n} \cong \nu_{1} \times \nu_{2} \times \ldots \times \nu_{m}$ then $n=m$ and there exists a permutation $\pi \in S_{n}$ such that $\lambda_{k}=\nu_{\pi(k)}$.
- All of these theorems have classification dependent proofs.

The representation rings of compact Lie algebras have no distinct features...

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- Consider two irreps λ_{i}, λ_{j} of a compact group G, and the Clebsch-Gordan series $\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}$. The relation $N_{i j}^{k} f_{i} f_{j} f_{k}>0$ holds if G is simply connected. (E. P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)
- Consider the irreps $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and $\mu_{1}, \mu_{2}, \ldots, \nu_{m}$ of a simply connected compact group G. If $\lambda_{1} \times \lambda_{2} \times \ldots \times \lambda_{n} \cong \nu_{1} \times \nu_{2} \times \ldots \times \nu_{m}$ then $n=m$ and there exists a permutation $\pi \in S_{n}$ such that $\lambda_{k}=\nu_{\pi(k)}$.
- All of these theorems have classification dependent proofs.

The representation rings of compact Lie algebras have no distinct features...

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- Consider two irreps λ_{i}, λ_{j} of a compact group G, and the Clebsch-Gordan series $\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}$. The relation $N_{i j}^{k} f_{i} f_{j} f_{k}>0$ holds if G is simply connected. (E. P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)
- Consider the irreps $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and $\mu_{1}, \mu_{2}, \ldots, \nu_{m}$ of a simply connected compact group G. If $\lambda_{1} \times \lambda_{2} \times \ldots \times \lambda_{n} \cong \nu_{1} \times \nu_{2} \times \ldots \times \nu_{m}$, then $n=m$ and there exists a permutation $\pi \in S_{n}$ such that $\lambda_{k}=\nu_{\pi(k)}$.
- All of these theorems have classification dependent proofs.

The representation rings of compact Lie algebras have no distinct features...

Tensor

Square
Representations of Lie Algebras Or: Symmetry Decides Simulability

- Consider two irreps λ_{i}, λ_{j} of a compact group G, and the Clebsch-Gordan series $\lambda_{i} \times \lambda_{j} \cong \oplus_{k} N_{i j}^{k} \lambda_{k}$. The relation $N_{i j}^{k} f_{i} f_{j} f_{k}>0$ holds if G is simply connected. (E. P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)
- Consider the irreps $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and $\mu_{1}, \mu_{2}, \ldots, \nu_{m}$ of a simply connected compact group G. If $\lambda_{1} \times \lambda_{2} \times \ldots \times \lambda_{n} \cong \nu_{1} \times \nu_{2} \times \ldots \times \nu_{m}$, then $n=m$ and there exists a permutation $\pi \in S_{n}$ such that $\lambda_{k}=\nu_{\pi(k)}$.
- All of these theorems have classification dependent proofs.

Elementary unitary quantum control theory I

Tensor

Square
Represen-
tations of
Lie
Algebras
Or:
Symmetry
Decides Simulability

- Assume that we can implement interactions from a given set $\mathcal{I}=\left\{i H_{1}, i H_{2}, \ldots\right\}$ of Hamiltonians with tunable control parameters: $H(t)=\sum_{j} \alpha_{j}(t) H_{j}$. This generates a unitary of the form

Zoltán Zimborás

- Two basic questions:
- Which are the gates (unitaries) that we can generate?
- How can we achieve a given gate in the most efficient way?

Elementary unitary quantum control theory I

Tensor
Square
Representations of Lie Algebras Or: Symmetry Decides Simulability

- Assume that we can implement interactions from a given set $\mathcal{I}=\left\{i H_{1}, i H_{2}, \ldots\right\}$ of Hamiltonians with tunable control parameters: $H(t)=\sum_{j} \alpha_{j}(t) H_{j}$. This generates a unitary of the form

$$
U=\mathcal{T} \int_{t=0}^{1} \exp \left[\sum_{j=1}^{m} i \alpha_{j}(t) H_{j}\right]
$$

- Two basic questions:
- Which are the gates (unitaries) that we can generate?
- How can we achieve a given gate in the most efficient way?

Elementary unitary quantum control theory I

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides Simulability

- Assume that we can implement interactions from a given set $\mathcal{I}=\left\{i H_{1}, i H_{2}, \ldots\right\}$ of Hamiltonians with tunable control parameters: $H(t)=\sum_{j} \alpha_{j}(t) H_{j}$. This generates a unitary of the form

$$
U=\mathcal{T} \int_{t=0}^{1} \exp \left[\sum_{j=1}^{m} i \alpha_{j}(t) H_{j}\right]
$$

- Two basic questions:
- Which are the gates (unitaries) that we can generate?
- How can we achieve a given gate in the most efficient way?

Elementary unitary quantum control theory II

Tensor
Square
Representations of Lie
Algebras Or: Symmetry Decides Simulability

- Using the Lie -Trotter formulas, we have

$$
\begin{aligned}
& \qquad e^{\left[i H_{k}, i H_{l}\right]}=\lim _{n \rightarrow \infty}\left(e^{i H_{k} / \sqrt{n}} e^{i H_{l} / \sqrt{n}} e^{-i H_{k} / \sqrt{n}} e^{-i H_{l} / \sqrt{n}}\right)^{n}, \\
& e^{-i\left(\alpha H_{k}+\beta H_{l}\right)}=\lim _{n \rightarrow \infty}\left(e^{-i\left(\alpha H_{k} / n\right)} e^{-i\left(\beta H_{l} / n\right)}\right)^{n}, \\
& \text { shows that one can obtain exponential of all commutators } \\
& {\left[i H_{k}, i H_{l}\right],\left[\left[i H_{k}, i H_{l}\right], i H_{m}\right], \ldots \text { (and their linear combinations) }}
\end{aligned}
$$ i.e., we end up with the full Lie algebra generated by I : we can obtain $U=e^{i \tilde{H}}$

Elementary unitary quantum control theory II

Tensor
Square
Representations of Lie
Algebras Or: Symmetry Decides Simulability

- Using the Lie -Trotter formulas, we have

$$
\begin{aligned}
e^{\left[i H_{k}, i H_{l}\right]} & =\lim _{n \rightarrow \infty}\left(e^{i H_{k} / \sqrt{n}} e^{i H_{l} / \sqrt{n}} e^{-i H_{k} / \sqrt{n}} e^{-i H_{l} / \sqrt{n}}\right)^{n}, \\
e^{-i\left(\alpha H_{k}+\beta H_{l}\right)} & =\lim _{n \rightarrow \infty}\left(e^{-i\left(\alpha H_{k} / n\right)} e^{-i\left(\beta H_{l} / n\right)}\right)^{n}
\end{aligned}
$$

shows that one can obtain exponential of all commutators [$\left.i H_{k}, i H_{l}\right]$, $\left[\left[i H_{k}, i H_{l}\right], i H_{m}\right], \ldots$ (and their linear combinations), i.e., we end up with the full Lie algebra generated by \mathcal{I} :
we can obtain $U=e^{i \bar{H}}$

Elementary unitary quantum control theory II

Tensor
Square
Representations of Lie
Algebras Or: Symmetry Decides Simulability

- Using the Lie -Trotter formulas, we have

$$
\begin{aligned}
e^{\left[i H_{k}, i H_{l}\right]} & =\lim _{n \rightarrow \infty}\left(e^{i H_{k} / \sqrt{n}} e^{i H_{l} / \sqrt{n}} e^{-i H_{k} / \sqrt{n}} e^{-i H_{l} / \sqrt{n}}\right)^{n}, \\
e^{-i\left(\alpha H_{k}+\beta H_{l}\right)} & =\lim _{n \rightarrow \infty}\left(e^{-i\left(\alpha H_{k} / n\right)} e^{-i\left(\beta H_{l} / n\right)}\right)^{n}
\end{aligned}
$$

shows that one can obtain exponential of all commutators [$\left.i H_{k}, i H_{l}\right]$, $\left[\left[i H_{k}, i H_{l}\right], i H_{m}\right], \ldots$ (and their linear combinations), i.e., we end up with the full Lie algebra generated by \mathcal{I} :

$$
i \tilde{H} \in\left\langle i H_{1}, i H_{2}, \ldots, i H_{n}\right\rangle_{L i e}
$$

we can obtain $U=e^{i \tilde{H}}$.

Unitary controllability, pure state controllability

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides Simulability

- Full unitary controllability. Any unitary gate can be reached iff

$$
\left\langle i H_{1}, i H_{2}, \ldots\right\rangle=\mathfrak{s u}(d) .
$$

- Pure-state controllability:

Unitary controllability, pure state controllability

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry

- Full unitary controllability. Any unitary gate can be reached iff

$$
\left\langle i H_{1}, i H_{2}, \ldots\right\rangle=\mathfrak{s u}(d)
$$

- Pure-state controllability:

$$
\begin{aligned}
& \left\langle i H_{1}, i H_{2}, \ldots\right\rangle=\mathfrak{s u}(d) \quad \text { when } d \text { is odd, } \\
& \left\langle i H_{1}, i H_{2}, \ldots\right\rangle \supset \mathfrak{u s p}(d) \text { when } d \text { is even. }
\end{aligned}
$$

Membership problems

Tensor

Square
Represen-
tations of
Lie
Algebras
Or:
Symmetry
Decides Simulability

Zoltán Zimborás

- Is there an efficient way to determine whether

 $i \tilde{H} \in\left\langle i H_{1}, i H_{2}, \ldots, i H_{n}\right\rangle_{L i e}($ or $\tilde{U} \in G)$?- Discrete case: $\left\{U_{1}, U_{2}, \ldots U_{n}\right\}$ set of unitaries; G is the discrete (finite or infinite) group generated by this set. Is there an efficient way of determining whether $\tilde{U} \in G$?

Membership problems

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides
Simulability

- Is there an efficient way to determine whether $i \tilde{H} \in\left\langle i H_{1}, i H_{2}, \ldots, i H_{n}\right\rangle_{\text {Lie }}($ or $\tilde{U} \in G)$?
- Discrete case: $\left\{U_{1}, U_{2}, \ldots U_{n}\right\}$ set of unitaries; G is the discrete (finite or infinite) group generated by this set. Is there an efficient way of determining whether $U \in G$?

Membership problems

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides Simulability

- Is there an efficient way to determine whether $i \tilde{H} \in\left\langle i H_{1}, i H_{2}, \ldots, i H_{n}\right\rangle_{\text {Lie }}($ or $\tilde{U} \in G)$?
- Discrete case: $\left\{U_{1}, U_{2}, \ldots U_{n}\right\}$ set of unitaries; G is the discrete (finite or infinite) group generated by this set. Is there an efficient way of determining whether $\tilde{U} \in G$?

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square
Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether

\square
- Hence $\tilde{O} \in \mathcal{A}$ iff $\left.O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime} \subset$
- Proof: a baby version of von Neumann's double commutant theorem
- There are efficient ways to find the commutant!
- For Lie algebras: $\left\{i H_{1}, i H_{2}, \ldots i H_{n}\right\}^{\prime} \not \subset\{i \tilde{H}\}^{\prime} \Rightarrow i \tilde{H} \notin\left\langle i H_{1}, i H_{2}, \ldots, i H_{n}\right\rangle_{\text {Lie }}$ However, the converse doesn't hold.
- Is there some hope for some other easy algorithm?

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square
Representations of Lie Algebras Or: Symmetry Decides Simulability

Zoltán Zimborás

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether $\tilde{O} \in \mathcal{A}$?
 - Hence $O \in \mathcal{A}$ iff a $\left\{O_{1}+O_{1}, O_{1}-O_{\tilde{O}}\right.$ - Proof: a baby version of von Neumann's double commutant theorem. - There are efficient ways to find the commutant!
- For Lie algebras: $\left\{i H_{1}, i H_{2}, \ldots i H_{n}\right\}^{\prime} \not \subset\{i \tilde{H}\}^{\prime} \Rightarrow i \tilde{H} \notin\left\langle i H_{1}, i H_{2}\right.$ However, the converse doesn't hold.
- Is there some hope for some other easy algorithm?

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether $\tilde{O} \in \mathcal{A}$?
- $\tilde{O} \in \mathcal{A}$ iff $\left\{O_{1}, O_{2}, \ldots O_{n}, \tilde{O}\right\}$ also generates only \mathcal{A}.

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether $\tilde{O} \in \mathcal{A}$?
- $\tilde{O} \in \mathcal{A}$ iff $\left\{O_{1}, O_{2}, \ldots O_{n}, \tilde{O}\right\}$ also generates only \mathcal{A}.
- $\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime}=\mathcal{A}^{\prime}$
- Proof: a baby version of von Neumann's double commutant theorem
- There are efficient ways to find the commutant!
- For Lie algebras:

However, the converse doesn't hold

- Is there some hope for some other easy algorithm?

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether $\tilde{O} \in \mathcal{A}$?
- $\tilde{O} \in \mathcal{A}$ iff $\left\{O_{1}, O_{2}, \ldots O_{n}, \tilde{O}\right\}$ also generates only \mathcal{A}.
- $\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime}=\mathcal{A}^{\prime}$
- Hence $\tilde{O} \in \mathcal{A}$ iff
a $\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime} \subset$ $\left\{\tilde{O}+\tilde{O}^{\dagger}, \tilde{O}-\tilde{O}^{\dagger}\right\}^{\prime}$
- Proof: a baby version of von Neumann's double commutant theorem
- There are efficient ways to find the commutant!
- For I ie algebras:

However, the converse doesn't hold

- Is there some hope for some other easy algorithm?

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether $\tilde{O} \in \mathcal{A}$?
- $\tilde{O} \in \mathcal{A}$ iff $\left\{O_{1}, O_{2}, \ldots O_{n}, \tilde{O}\right\}$ also generates only \mathcal{A}.
- $\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime}=\mathcal{A}^{\prime}$
- Hence $\tilde{O} \in \mathcal{A}$ iff
a $\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime} \subset$ $\left\{\tilde{O}+\tilde{O}^{\dagger}, \tilde{O}-\tilde{O}^{\dagger}\right\}^{\prime}$
- Proof: a baby version of von Neumann's double commutant theorem.
- There are efficient ways to find the commutant!
- For Lie algebras:
$\left\{i H_{1}, i H_{2}, \ldots i H_{n}\right\}^{\prime} \not \subset\{i \tilde{H}\}^{\prime} \Rightarrow i \tilde{H}$
However, the converse doesn't hold.
- Is there some hope for some other easy algorithm?

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square Representations of Lie Algebras Or:
Symmetry Decides Simulability

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether $\tilde{O} \in \mathcal{A}$?
- $\tilde{O} \in \mathcal{A}$ iff $\left\{O_{1}, O_{2}, \ldots O_{n}, \tilde{O}\right\}$ also generates only \mathcal{A}.
- $\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime}=\mathcal{A}^{\prime}$
- Hence $\tilde{O} \in \mathcal{A}$ iff

$$
\begin{aligned}
& \text { a }\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime} \subset \\
& \left\{\tilde{O}+\tilde{O}^{\dagger}, \tilde{O}-\tilde{O}^{\dagger}\right\}^{\prime}
\end{aligned}
$$

- Proof: a baby version of von Neumann's double commutant theorem.
- There are efficient ways to find the commutant!
- For Lie algebras:
$\left\{i H_{1}, i H_{2}, \ldots i H_{n}\right\}^{\prime} \not \subset\{i \tilde{H}\}^{\prime} \Rightarrow i \tilde{H} \notin\left\langle i H_{1}, i H_{2}, \ldots, i H_{n}\right\rangle_{\text {Lie }}$ However, the converse doesn't hold.
- Is there some hope for some other easy algorithm?

Analogous question in associative \dagger-matrix algebras (C^{*} algebras)

Tensor
Square Representations of

- Given a set of operators $\left\{O_{1}, O_{2}, \ldots O_{n}\right\}$, consider the generated matrix algebra (C^{*}-algebra) \mathcal{A}. Is there an efficient way to determine whether $\tilde{O} \in \mathcal{A}$?
- $\tilde{O} \in \mathcal{A}$ iff $\left\{O_{1}, O_{2}, \ldots O_{n}, \tilde{O}\right\}$ also generates only \mathcal{A}.
- $\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime}=\mathcal{A}^{\prime}$
- Hence $\tilde{O} \in \mathcal{A}$ iff

$$
\begin{aligned}
& \text { a }\left\{O_{1}+O_{1}^{\dagger}, O_{1}-O_{1}^{\dagger}, O_{2}+O_{2}^{\dagger}, O_{2}-O_{2}^{\dagger}, \ldots O_{n}+O_{n}^{\dagger}, O_{n}-O_{n}^{\dagger}\right\}^{\prime} \subset \\
& \left\{\tilde{O}+\tilde{O}^{\dagger}, \tilde{O}-\tilde{O}^{\dagger}\right\}^{\prime}
\end{aligned}
$$

- Proof: a baby version of von Neumann's double commutant theorem.
- There are efficient ways to find the commutant!
- For Lie algebras:
$\left\{i H_{1}, i H_{2}, \ldots i H_{n}\right\}^{\prime} \not \subset\{i \tilde{H}\}^{\prime} \Rightarrow i \tilde{H} \notin\left\langle i H_{1}, i H_{2}, \ldots, i H_{n}\right\rangle_{\text {Lie }}$ However, the converse doesn't hold.
- Is there some hope for some other easy algorithm?

Simple symmetries

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides Simulability

Zoltán Zimborás

- For Unitary Gates:
- If there exists a non-trivial symmetry S, such that $\left[S, U_{i}\right]=0$ for all $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$, but $[S, U] \neq 0$, then U cannot be generated.
- For Hamiltonians:
- If there exists a non-trivial symmetry S, such that $\left[S, H_{i}\right]=0$ for all $\left\{i H_{1}, i H_{2}, \ldots, i H_{n}\right\}$, but $[S, i H] \neq 0$, then $i H$ cannot be generated.
- However, this is only a necessary, but not sufficient, condition.

A simple example

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- The pair interaction $i H_{z z}:=i Z_{1} Z_{2}$ cannot be simulated by the local interactions $\mathcal{P}=\left\{i X_{1}, i Y_{1}, i X_{2}, i Y_{2}\right\}$ of a two-qubit system in spite of coinciding (trivial) commutants $\mathcal{P}^{\prime}=\left(\mathcal{P} \cup\left\{i H_{z z}\right\}\right)^{\prime}=\mathbb{C}_{4}$.
(a) $\begin{gathered}\text { 1 } \\ 8 \\ \frac{1}{2} \\ 0\end{gathered}$

Zoltán
Zimborás

- However, we know that if we consider a 'doubled Hilbert space', then there are entanglement (or LU) invariants.

$$
\begin{aligned}
& \langle\psi|\langle\psi| P^{(13)}|\psi\rangle|\psi\rangle= \\
& \langle\psi|\langle\psi|\left(U_{1}^{\dagger} \otimes U_{2}^{\dagger}\right) \otimes\left(U_{1}^{\dagger} \otimes U_{2}^{\dagger}\right) P^{(13)}\left(U_{1} \otimes U_{2}\right) \otimes\left(U_{1} \otimes U_{2}\right)|\psi\rangle|\psi\rangle
\end{aligned}
$$

- Hence we should study higher order symmetries.

A simple example

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- The pair interaction $i H_{z z}:=i Z_{1} Z_{2}$ cannot be simulated by the local interactions $\mathcal{P}=\left\{i X_{1}, i Y_{1}, i X_{2}, i Y_{2}\right\}$ of a two-qubit system in spite of coinciding (trivial) commutants $\mathcal{P}^{\prime}=\left(\mathcal{P} \cup\left\{i H_{z z}\right\}\right)^{\prime}=\mathbb{C}_{4}$.
(a) $\begin{gathered}\text { 1 } \\ 8 \\ \frac{1}{2} \\ 0\end{gathered}$

Zoltán
Zimborás

- However, we know that if we consider a 'doubled Hilbert space', then there are entanglement (or LU) invariants.

$$
\begin{aligned}
& \langle\psi|\langle\psi| P^{(13)}|\psi\rangle|\psi\rangle= \\
& \langle\psi|\langle\psi|\left(U_{1}^{\dagger} \otimes U_{2}^{\dagger}\right) \otimes\left(U_{1}^{\dagger} \otimes U_{2}^{\dagger}\right) P^{(13)}\left(U_{1} \otimes U_{2}\right) \otimes\left(U_{1} \otimes U_{2}\right)|\psi\rangle|\psi\rangle
\end{aligned}
$$

- Hence we should study higher order symmetries.

Higher-order symmetries

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

- For Unitary Gates:
- A non-trivial second-order symmetry $S^{(2)}$ on $\mathcal{H}^{\otimes 2}$ or a third-order symmetry $S^{(3)}$ on $\mathcal{H}^{\otimes 3}$ are operators that satisfy $\left[S^{(2)}, U_{i} \otimes U_{i}\right]=0$ and $\left[S^{(3)}, U_{i} \otimes U_{i} \otimes U_{i}\right]=0$ for all $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$.
- If for some n-th order symmetry $\left[S^{(n)}, U^{\otimes n}\right] \neq 0$, then U cannot be generated.
- This cannot be a sufficient an necessary condition for any finite n - e.g. group designs provide counter examples.
- For Hamiltonians:
- Second-order and third-order symmetries: $\left[S^{(2)}, i H_{\ell} \otimes \mathbb{1}+\mathbb{1} \otimes i H_{\ell}\right]=0$ and $\left[S^{(3)}, i H_{\ell} \otimes \mathbb{1} \otimes \mathbb{1}+\mathbb{1} \otimes i H_{\ell} \otimes \mathbb{1}+\mathbb{1} \otimes \mathbb{1} i H_{\ell}\right]=0$ for all - If $\left[S^{(2)}, i H \otimes \mathbb{1}+\mathbb{1} \otimes i H\right] \neq 0$ then $i H \notin\left\langle i H_{1}, i H_{2}, \ldots, i H_{m}\right\rangle_{\text {Lie }}$.

Higher-order symmetries

Tensor

Square Representations of Lie Algebras Or:
Symmetry
Decides Simulability

Zoltán Zimborás

- For Unitary Gates:
- A non-trivial second-order symmetry $S^{(2)}$ on $\mathcal{H}^{\otimes 2}$ or a third-order symmetry $S^{(3)}$ on $\mathcal{H}^{\otimes 3}$ are operators that satisfy $\left[S^{(2)}, U_{i} \otimes U_{i}\right]=0$ and $\left[S^{(3)}, U_{i} \otimes U_{i} \otimes U_{i}\right]=0$ for all $\left\{U_{1}, U_{2}, \ldots, U_{n}\right\}$.
- If for some n-th order symmetry $\left[S^{(n)}, U^{\otimes n}\right] \neq 0$, then U cannot be generated.
- This cannot be a sufficient an necessary condition for any finite n - e.g. group designs provide counter examples.
- For Hamiltonians:
- Second-order and third-order symmetries: $\left[S^{(2)}, i H_{\ell} \otimes \mathbb{1}+\mathbb{1} \otimes i H_{\ell}\right]=0$ and $\left[S^{(3)}, i H_{\ell} \otimes \mathbb{1} \otimes \mathbb{1}+\mathbb{1} \otimes i H_{\ell} \otimes \mathbb{1}+\mathbb{1} \otimes \mathbb{1} i H_{\ell}\right]=0$ for all $\left\{i H_{1}, i H_{2}, \ldots, i H_{n}\right\}$.
- If $\left[S^{(2)}, i H \otimes \mathbb{1}+\mathbb{1} \otimes i H\right] \neq 0$ then $i H \notin\left\langle i H_{1}, i H_{2}, \ldots, i H_{m}\right\rangle_{\text {Lie }}$.

Our main theorem

Tensor
Square Representations of Lie

Theorem

Given a subalgebra \mathfrak{h} of a compact semisimple Lie algebra \mathfrak{g} and a faithful representation ϕ of \mathfrak{g}, then the following statements are equivalent:
(1) $\mathfrak{h}=\mathfrak{g}$,
(2) $\operatorname{dim}\left(\operatorname{com}\left[\left.(\phi \otimes \bar{\phi})\right|_{\mathfrak{h}}\right]\right)=\operatorname{dim}(\operatorname{com}[\phi \otimes \bar{\phi}])$,
(3) $\operatorname{dim}\left(\operatorname{com}\left[\left.(\phi \otimes \phi)\right|_{\mathfrak{h}}\right]\right)=\operatorname{dim}(\operatorname{com}[\phi \otimes \phi])$,
(4) $\left\|\left.(\phi \otimes \bar{\phi})\right|_{\mathfrak{h}}\right\|_{2}=\|\phi \otimes \bar{\phi}\|_{2}$,
(5) $\left\|\left.(\phi \otimes \bar{\phi})\right|_{\mathfrak{h}}\right\|_{1}=\|\phi \otimes \bar{\phi}\|_{1}$,
(6) $\left\|\left.(\phi \otimes \phi)\right|_{\mathfrak{h}}\right\|_{2}=\|\phi \otimes \phi\|_{2}$.
(7) $\left\|\left.(\phi \otimes \phi)\right|_{\mathfrak{h}}\right\|_{1}=\|\phi \otimes \phi\|_{1}$.

Strengthening the theorem

Tensor
Square Representations of Lie
Algebras Or:
Symmetry Decides Simulability

Zoltán Zimborás

Theorem

Let α be a simple and self-dual representation of a compact simple Lie algebra \mathfrak{g}, and let \mathfrak{h} be a subalgebra of \mathfrak{g}, then
(1) $\left\|\left.(\alpha \otimes \alpha)\right|_{\mathfrak{h}}\right\|_{1} \geq b(\alpha)+\|\alpha \otimes \alpha\|_{1}$,
(2) $\left\|\left.(\alpha \otimes \alpha)\right|_{\mathfrak{h}}\right\|_{2} \geq b(\alpha)^{2}+\|\alpha \otimes \alpha\|_{2}$, and
(3) $\operatorname{dim}\left(\operatorname{com}\left[\left.(\alpha \otimes \alpha)\right|_{\mathfrak{h}}\right]\right) \geq b(\alpha)^{2}+\operatorname{dim}(\operatorname{com}[\alpha \otimes \alpha])$ hold, where $b(\alpha)$ denotes the number of non-vanishing components in the highest weight $\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ corresponding to α.

Our final main result for control theory

Tensor
Square Representations of Lie Algebras Or: Symmetry Decides Simulability

Consider two sets $\mathcal{P}:=\left\{i H_{1}, \ldots, i H_{p}\right\}$ and $\mathcal{Q}:=\left\{i H_{p+1}, \ldots, i H_{q}\right\}$ of (skew-hermitian) interactions, and let C_{α} denote elements of a linear basis spanning the ce nter \mathcal{C} of the commutant $(\mathcal{P} \cup \mathcal{Q})^{\prime}$. For the central projections, define the matrix T by its entries $T_{\alpha \beta}:=\operatorname{Tr}\left[C_{\alpha}^{\dagger} i H_{\beta}\right]$ for $1 \leq \alpha \leq \operatorname{dim}(\mathcal{C})$ and $1 \leq \beta \leq q$ as well as \widetilde{T} by $\widetilde{T}_{\alpha \beta}:=\operatorname{Tr}\left[C_{\alpha}^{\dagger} i H_{\beta}\right]$ for $1 \leq \beta \leq p$. Then \mathcal{P} simulates \mathcal{Q} in the sense $\langle\mathcal{P}\rangle=\langle\mathcal{P} \cup \mathcal{Q}\rangle$, if and only if both conditions
(A) $\operatorname{dim}\left[\mathcal{P}^{(2)}\right]=\operatorname{dim}\left[(\mathcal{P} \cup \mathcal{Q})^{(2)}\right]$ and $(\mathrm{B}) \operatorname{rank}(\widetilde{T})=\operatorname{rank}(T)$ are fulfilled.

Central spin model

Tensor
Square
Representations of Lie Algebras Or:
Symmetry
Decides Simulability

Consider a central spin interacting with $n-1$ surrounding spins via a star-shaped coupling graph (where the surrounding spins may be taken as uncontrolled spin bath) The interactions amount to a drift term (tunneling plus coupling) and just a local Z-control on the central spin, $\mathcal{P}:=\left\{i X_{1}\right.$ $\left.+i \sum_{k=2}^{n} J_{k}\left(X_{1} X_{k}+Y_{1} Y_{k}+Z_{1} Z_{k}\right), i Z_{1}\right\}$. We ask whether the central spin can be fully controlled, i.e., if $\mathcal{Q}:=\left\{i X_{1}\right\}$ can be simulated.

Central spin model

Tensor
Square Representations of Lie Algebras Or:
Symmetry Decides Simulability

Zoltán Zimborás

Table : Central spin model. number n of spins, Lie dimensions $\operatorname{dim}(\langle\mathcal{P}\rangle)=\operatorname{dim}(\langle\mathcal{P} \cup \mathcal{Q}\rangle)$, the isomorphy type, dimensions of second- and first-order symmetries (i.e. $\operatorname{dim}\left[\mathcal{P}^{(2)}\right]=\operatorname{dim}\left[(\mathcal{P} \cup \mathcal{Q})^{(2)}\right]$ and $\left.\operatorname{dim}\left[\mathcal{P}^{\prime}\right]=\operatorname{dim}\left[(\mathcal{P} \cup \mathcal{Q})^{\prime}\right]\right)$, and ranks of the central projections (i.e. $\operatorname{rank}(\widetilde{T})=\operatorname{rank}(T)$).

Summary and Outlook

Tensor
Square
Represen-
tations of
Lie
Algebras
Or:
Symmetry
Decides Simulability

- We have proved a theorem, which is
- provides new additional results on the representation theory of compact Lie algebras;
- shows the distinctness of the representation rings of compact Lie algebras;
- has practical relevance in physics.

Summary and Outlook

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides Simulability

Zoltán
Zimborás

- We have proved a theorem, which is
- provides new additional results on the representation theory of compact Lie algebras;
- shows the distinctness of the representation rings of compact Lie algebras;
- has practical relevance in physics.

Summary and Outlook

Tensor
Square
Represen-
tations of

Algebras
Or:
Symmetry
Decides Simulability

Zoltán Zimborás

- We have proved a theorem, which is
- provides new additional results on the representation theory of compact Lie algebras;
- shows the distinctness of the representation rings of compact Lie algebras;
- has practical relevance in physics.

Summary and Outlook

Tensor
Square
Represen-
tations of Lie
Algebras
Or:
Symmetry
Decides Simulability

Zoltán Zimborás

- We have proved a theorem, which is
- provides new additional results on the representation theory of compact Lie algebras;
- shows the distinctness of the representation rings of compact Lie algebras;
- has practical relevance in physics.

