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Representations of compact groups and compact Lie algebras

• The representation theory of compact groups is a well-understood subject
into which one can embed another classic field, the representations of
compact Lie algebras. One hears usually the following statements:

• all the questions concerning the representation theory of semi-simple (and
compact) Lie algebras are already solved.

• There are no interesting and ’natural’ properties of the representation
theory of compact Lie algebras that makes it very distinct from that of
compact groups.

• All the group theory needed for physics have been already worked out.
Group theory has no more practical importance for physics.
Revival of the Gruppenpest argument of Slater. (Interview with E. Wigner by Lillian

Hoddeson, Gordon Baym and Frederick Seitz at the New Yorker Hotel January 24, 1981)
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Representations of compact groups - basic properties

• Any continuous representation of a compact group is equivalent to a
unitary representation.

• Any continuous irreducible representation (irrep) of a compact group is
finite dimensional.

• Any continuous representation of a compact group is completely
reducible.

• For any two irreps can define through the Clebsch-Gordan series (or the
direct-product fusion rules)

λi × λj ∼= ⊕kNk
ijλk.

The representation ring of the compact group. (More precisely it is a
ring with a basis/ordered ring/rig/semi-ring.)

• Given H < G (H is a closed subgroup of the compact group G), and an
irrep λG of G,

λG|H ∼= ⊕kNkλHk ,

where Nk are called restriction fusion rules.
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Dynkin solved all representation theoretic problems
concerning semi-simple Lie algebras...

• A baby version of the famous P 6= NP conjecture is Valiant’s conjecture
VP 6= VNP.

• Consider h = su(d1)⊕ su(d2) and g = su(d1d2) with the canonical
embedding h < g, and the restriction fusion rules

λg
h
∼= ⊕kNkλh

k

• Solving VP 6= VNP is equivalent to deciding whether there exists a
polynomial algorithm (in d1, d2, and the dimension of λg) for obtaining
the above Nk.

• This question gave rise to a whole field of modern mathematics called
Geometric Complexity Theory, with many subquestions, e.g., is there a
polynomial algorithm for deciding Nk 6= 0.
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The representation rings of compact Lie algebras
have no distinct features...

• Consider the dihedral and quaternion groups, D4 and Q8

• D4 and Q8 are not isomorphic, but isomorphic isomorphic representation
rings.

• Handelman’s theorem: the representation ring (λi × λj ∼= ⊕kNk
ijλk)

uniquely determines a semi-simple Lie algebra/simply connected compact
Lie group. (J. R. McMullen, Math. Z. 185 539 (1984); D. Handelman, Int. J., 4 59 (1993); D. Kazdhan, M. Larsen,

Y. Varshavski, Algebra & Number Theory 8 243 (2014).). The theorem was proved using the
classification of semi-simple Lie algebras and their representations.
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The representation rings of compact Lie algebras
have no distinct features...

• Consider two irreps λ, µ of a compact group G, then
‖λ× µ‖2 = ‖λ× µ‖2 holds. Furthermore, ‖λ× µ‖1 = ‖λ× µ‖1
holds if G is simply connected and compact. (R. Coquereaux, J.-B. Zuber J. Phys. A 44

295208 (2011); Sigma 9 039 (2013); J. Phys. A: Math. Theor. 47 455202 (2014) )
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The representation rings of compact Lie algebras
have no distinct features...

• Consider two irreps λi, λj of a compact group G, and the Clebsch-Gordan
series λi × λj ∼= ⊕kNk

ijλk. The relation Nk
ijfifjfk > 0 holds if G is

simply connected. (E. P. Wigner, On representations of certain finite groups, Amer. J. Math., 63 (1941), 57-63.)

• Consider the irreps λ1, λ2, . . . , λn and µ1, µ2, . . . , νm of a simply
connected compact group G. If λ1 × λ2 × . . .× λn ∼= ν1 × ν2 × . . .× νm,
then n = m and there exists a permutation π ∈ Sn such that λk = νπ(k).

• All of these theorems have classification dependent proofs.
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Elementary unitary quantum control theory I

• Assume that we can implement interactions from a given set
I = {iH1, iH2, . . .} of Hamiltonians with tunable control parameters:
H(t) =

∑
j αj(t)Hj . This generates a unitary of the form

U = T
∫ 1

t=0

exp

[
m∑
j=1

iαj(t)Hj

]

• Two basic questions:
• Which are the gates (unitaries) that we can generate?
• How can we achieve a given gate in the most efficient way?
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Elementary unitary quantum control theory II

• Using the Lie -Trotter formulas, we have

e[iHk,iHl] = lim
n→∞

(
eiHk/

√
neiHl/

√
ne−iHk/

√
ne−iHl/

√
n
)n

,

e−i(αHk+βHl) = lim
n→∞

(
e−i(αHk/n)e−i(βHl/n)

)n
,

shows that one can obtain exponential of all commutators
[iHk, iHl], [[iHk, iHl], iHm], . . .(and their linear combinations),
i.e., we end up with the full Lie algebra generated by I:

iH̃ ∈ 〈iH1, iH2, . . . , iHn〉Lie

we can obtain U = eiH̃ .
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Unitary controllability, pure state controllability

• Full unitary controllability. Any unitary gate can be reached iff

〈iH1, iH2, . . .〉 = su(d).

• Pure-state controllability:

〈iH1, iH2, . . .〉 = su(d) when d is odd,

〈iH1, iH2, . . .〉 ⊃ usp(d) when d is even.
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Membership problems

• Is there an efficient way to determine whether
iH̃ ∈ 〈iH1, iH2, . . . , iHn〉Lie (or Ũ ∈ G)?

• Discrete case: {U1, U2, . . . Un} set of unitaries; G is the discrete (finite or
infinite) group generated by this set. Is there an efficient way of
determining whether Ũ ∈ G?
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• Discrete case: {U1, U2, . . . Un} set of unitaries; G is the discrete (finite or
infinite) group generated by this set. Is there an efficient way of
determining whether Ũ ∈ G?
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Analogous question in associative †-matrix algebras (C∗ algebras)

• Given a set of operators {O1, O2, . . . On}, consider the generated matrix
algebra (C∗-algebra) A. Is there an efficient way to determine whether

Õ ∈ A?
• Õ ∈ A iff {O1, O2, . . . On, Õ} also generates only A.

• {O1+O†1, O1−O†1, O2+O†2, O2−O†2, . . . On+O†n, On−O†n}′ = A′

• Hence Õ ∈ A iff
a {O1+O†1, O1−O†1, O2+O†2, O2−O†2, . . . On+O†n, On−O†n}′ ⊂
{Õ+Õ†, Õ−Õ†}′

• Proof: a baby version of von Neumann’s double commutant theorem.
• There are efficient ways to find the commutant!

• For Lie algebras:
{iH1, iH2, . . . iHn}′ 6⊂ {iH̃}′ ⇒ iH̃ /∈ 〈iH1, iH2, . . . , iHn〉Lie
However, the converse doesn’t hold.

• Is there some hope for some other easy algorithm?
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Õ ∈ A?
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{Õ+Õ†, Õ−Õ†}′
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Simple symmetries

• For Unitary Gates:

• If there exists a non-trivial symmetry S, such that [S,Ui] = 0 for all
{U1, U2, . . . , Un}, but [S,U ] 6= 0, then U cannot be generated.

• For Hamiltonians:

• If there exists a non-trivial symmetry S, such that [S,Hi] = 0 for all
{iH1, iH2, . . . , iHn}, but [S, iH] 6= 0, then iH cannot be generated.

• However, this is only a necessary, but not sufficient, condition.
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A simple example

• The pair interaction iHzz := iZ1Z2 cannot be simulated by the local
interactions P = {iX1, iY1, iX2, iY2} of a two-qubit system in spite of
coinciding (trivial) commutants P ′ = (P ∪ {iHzz})′ = C14.

(a) 1 2 (b) 1 2 3 4

• However, we know that if we consider a ’doubled Hilbert space’, then
there are entanglement (or LU) invariants.

〈ψ|〈ψ|P (13)|ψ〉|ψ〉 =

〈ψ|〈ψ|(U†1 ⊗ U
†
2 )⊗ (U†1 ⊗ U

†
2 )P (13)(U1 ⊗ U2)⊗ (U1 ⊗ U2)|ψ〉|ψ〉

• Hence we should study higher order symmetries.

14 / 21
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Higher-order symmetries

• For Unitary Gates:

• A non-trivial second-order symmetry S(2) on H⊗2 or a third-order
symmetry S(3) on H⊗3 are operators that satisfy [S(2), Ui ⊗ Ui] = 0 and

[S(3), Ui ⊗ Ui ⊗ Ui] = 0 for all {U1, U2, . . . , Un}.
• If for some n-th order symmetry [S(n), U⊗n] 6= 0, then U cannot be

generated.

• This cannot be a sufficient an necessary condition for any finite n - e.g.
group designs provide counter examples.

• For Hamiltonians:

• Second-order and third-order symmetries: [S(2), iH` ⊗ 1+ 1⊗ iH`] = 0

and [S(3), iH` ⊗ 1⊗ 1+ 1⊗ iH` ⊗ 1+ 1⊗ 1iH`] = 0 for all
{iH1, iH2, . . . , iHn}.

• If [S(2), iH ⊗ 1+ 1⊗ iH] 6= 0 then iH /∈ 〈iH1, iH2, . . . , iHm〉Lie.

15 / 21
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Our main theorem

Theorem

Given a subalgebra h of a compact semisimple Lie algebra g and a faithful
representation φ of g, then the following statements are equivalent:
(1) h = g,
(2) dim(com[(φ⊗ φ̄)|h]) = dim(com[φ⊗ φ̄]),
(3) dim(com[(φ⊗ φ)|h]) = dim(com[φ⊗ φ]),
(4) ‖(φ⊗ φ̄)|h‖2 = ‖φ⊗ φ̄‖2,
(5) ‖(φ⊗ φ̄)|h‖1 = ‖φ⊗ φ̄‖1,
(6) ‖(φ⊗ φ)|h‖2 = ‖φ⊗ φ‖2.
(7) ‖(φ⊗ φ)|h‖1 = ‖φ⊗ φ‖1.
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Strengthening the theorem

Theorem

Let α be a simple and self-dual representation of a compact simple Lie algebra
g, and let h be a subalgebra of g, then
(1) ‖(α⊗ α)|h‖1 ≥ b(α) + ‖α⊗ α‖1,
(2) ‖(α⊗ α)|h‖2 ≥ b(α)2 + ‖α⊗ α‖2, and
(3) dim(com[(α⊗ α)|h]) ≥ b(α)2 + dim(com[α⊗ α]) hold,
where b(α) denotes the number of non-vanishing components in the highest
weight (α1, . . . , α`) corresponding to α.
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Our final main result for control theory

Consider two sets P := {iH1, . . . , iHp} and Q := {iHp+1, . . . , iHq} of
(skew-hermitian) interactions, and let Cα denote elements of a linear basis
spanning the ce
nter C of the commutant (P∪Q)′. For the central projections, define the
matrix T by its entries Tαβ := Tr[C†αiHβ ] for 1 ≤ α ≤ dim(C) and 1 ≤ β ≤ q
as well as T̃ by T̃αβ := Tr[C†αiHβ ] for 1 ≤ β ≤ p. Then P simulates Q in the
sense 〈P〉 = 〈P∪Q〉, if and only if both conditions

(A) dim[P(2)] = dim[(P∪Q)(2)] and (B) rank(T̃ ) = rank(T ) are fulfilled.

18 / 21



Tensor
Square

Represen-
tations of

Lie
Algebras

Or:
Symmetry

Decides
Simulability

Zoltán
Zimborás

Central spin model

Consider a central spin interacting with n−1 surrounding spins via a
star-shaped coupling graph (where the surrounding spins may be taken as
uncontrolled spin bath) The interactions amount to a drift term (tunneling
plus coupling) and just a local Z-control on the central spin, P := {iX1

+i
∑n
k=2 Jk(X1Xk+Y1Yk+Z1Zk), iZ1}. We ask whether the central spin

can be fully controlled, i.e., if Q := {iX1} can be simulated.
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Central spin model

Table : Central spin model. number n of spins, Lie dimensions
dim(〈P〉) = dim(〈P∪Q〉), the isomorphy type, dimensions of second- and first-order

symmetries (i.e. dim[P(2)] = dim[(P∪Q)(2)] and dim[P ′] = dim[(P∪Q)′]), and

ranks of the central projections (i.e. rank(T̃ ) = rank(T )).

n Lie- Isomorphy No. of symmetries Rank of
dim. type 2nd 1st proj.

case (a): Jk = 1
2 15 su(4) 2 1 0
3 38 su(2)⊕su(6) 8 2 0
4 78 su(4)⊕su(8) 50 5 0
5 137 su(2)⊕su(6)⊕su(10) 392 14 0
6 221 su(4)⊕su(8)⊕su(12) 3528 42 0

case (b): Jk = 2 for even k and Jk = 1 otherwise
2 15 su(4) 2 1 0
3 63 su(8) 2 1 0
4 158 su(4)⊕su(12) 8 2 0
5 396 su(2)⊕su(6)⊕su(6)⊕su(18) 32 4 0
6 796 su(4)⊕su(8)⊕su(12)⊕su(24) 200 10 0
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Summary and Outlook

• We have proved a theorem, which is

• provides new additional results on the representation theory of compact Lie
algebras;

• shows the distinctness of the representation rings of compact Lie algebras;

• has practical relevance in physics.
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