

HUNGARIAN ACADEMY OF SCIENCES WIGNER RESEARCH CENTRE FOR PHYSICS

M. Gyulassy 3/13/15

Consistency of Perfect Fluidity and Jet Quenching in semi-Quark-Gluon Monopole Plasmas

Jiechen Xu,^{1, *} Jinfeng Liao,^{2,3,†} and Miklos Gyulassy^{1,‡}

¹Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027, USA ²Physics Dept and CEEM, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA ³RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973, USA (Dated: March 10, 2015)

We utilize a new framework, CUJET3.0, to deduce the energy and temperature dependence of jet transport parameter, $\hat{q}(E > 10 \text{ GeV}, T)$, from a combined analysis of available data on nuclear modification factor and azimuthal asymmetries from RHIC/BNL and LHC/CERN on high energy nuclear collisions. Extending a previous perturbative-QCD based jet energy loss model (known as CUJET2.0) with (2+1)D viscous hydrodynamic bulk evolution, this new framework includes three novel features of nonperturbative physics origin: (1) the Polyakov loop suppression of color-electric scattering (aka "semi-QGP" of Pisarski et al) and (2) the enhancement of jet scattering due to emergent magnetic monopoles near T_c (aka "magnetic scenario" of Liao and Shuryak) and (3) thermodynamic properties constrained by lattice QCD data. CUJET3.0 reduces to v2.0 at high temperatures T > 400 MeV, but greatly enhances \hat{q} near the QCD deconfinement transition temperature range. This enhancement accounts well for the observed elliptic harmonics of jets with $p_T > 10$ GeV. Extrapolating our data-constrained \hat{q} down to thermal energy scales, $E \sim 2$ GeV, we find for the first time a remarkable consistency between high energy jet quenching and bulk perfect fluidity with $\eta/s \sim T^3/\hat{q} \sim 0.1$ near T_c .

CUJET3: Jiechen Xu, Jinfeng Liao, MG arXiv:1411.3673 [hep-ph]; version 2 CUJET2: Jiechen Xu, A. Buzzatti, MG, JHEP 1408 (2014) 063, arXiv:1402.2956 sQGP is a novel form of QCD matter discovered at RHIC in Au+Au @200 AGeV and probed at higher temp at LHC in Pb+Pb @2760 AGeV

Theoretical interpretations of sQGP include

- 1) strongly coupled Quark Gluon Plasmas (sQGP)
- 2) <u>Color Glass Condensate (or Color Scintillator Arrays</u>)
- 3) 10D <u>Black Holes</u> in $AdS_5 X S_5$ with strings
- 4) Unruh Radiation *Fields* from Accelerating SU(N) sources

5) <u>semi-Quark-Gluon-Monopole Plasmas (sQGMP)</u>

Ref 1: M.G, L. McLerran, NPA750:30,2005.
 Ref 2: MG, L. Levai, , I.Vitev, T.S. Biró, PRD90 (2014) 5, 054025
 Ref 4: T.S. Biró, Z. Szendi, Z. Schram, EPJ. A50 (2014) 6
 <u>Ref 5: Jiechen Xu, Jinfeng Liao, MG arXiv:1411.3673 [hep-ph]</u>
 M.Gyulassy, Wigner, 3/13/15

Bulk Flow suggests strongly coupled "perfect fluidity" for pT<2 GeV But Hard Jet probes suggest weak jet medium interactions pT>10.

What is the missing physics that could resolve this Puzzle?

Kinetic theory => inverse connection between eta/s and the jet transport qhat(T,E) field

Jiechen Xu, Jinfeng Liao, MG arXiv:1411.3673 [hep-ph]

We now turn to the shear viscosity. As in [4–6], an estimate of shear viscosity per entropy density η/s can be derived from kinetic theory in the weak coupling limit:

$$\eta/s = \frac{1}{s} \frac{4}{15} \sum_{a} \rho_a \langle p \rangle_a \lambda_a^{tr} \qquad \text{We must know composition and mfp} \\ = \frac{4T}{5s} \sum_{a} \rho_a \left(\sum_{b} \rho_b \int_0^{\langle S_{ab} \rangle/2} dq^2 \frac{4q^2}{\langle S_{ab} \rangle} \frac{d\sigma_{ab}}{dq^2} \right)^{-1} \\ = \frac{18T^3}{5s} \sum_{a} \rho_a / \hat{q}_a(T, E = 3T) \quad . \tag{9}$$

- [4] P. Danielewicz and M. Gyulassy, Phys. Rev. D 31, 53 (1985).
- [5] T. Hirano and M. Gyulassy, Nucl. Phys. A 769, 71 (2006).
- [6] A. Majumder, B. Muller, and X. N. Wang, Phys. Rev. Lett. 99, 192301 (2007).

Part 1: Open problems

- QCD thermodynamics near Tc~ 150-250 MeV Is not consistent with a wide range of popular models Something is missing in sQGP picture.
- 2) Jet Quenching pT>10 GeV in AA can be well understood In a perturbative QCD paradigm with only a modest Qhat(pT>10,T)/T^3 ~ 4 but pQCD Qhat → 0 near Tc ! which is inconsistent with (3)
- 3) Bulk collective low pT< 2 GeV flow v2(pT) requires Close to minimum eta/s ~ T^3/Qhat(pT~3T, T) ~ 0.1-0.2 That is Inconsistent with (2)

Part 2: Our proposed sQGMP solution to Part 1 puzzles

Szabolcs Borsányi^{*a*}, Zoltán Fodor^{*a,b,c*}, Christian Hoelbling^{*a*}, Sándor D. Katz^{*c,d*}, LATTICE2013 (2014) 155 Stefan Krieg^{*a,b**}, Kálmán K. Szabó^{*a,e*}

. Continuum EoS for QCD with Nf=2+1 flavors

In the QCD transition temperature range 150 < T< 200 MeV the sQGP is (1) *NOT* a Hadron Resonance Gas (HRG) (2) *NOT* a perturbative Q+G plasma of quasi free quarks and gluons

(3) **NOT** a conformal AdS Black Hole

(4) possibly <u>a semi-QGP</u> + <u>Mag monopole</u> Plasma (sQGMP)

Weak vs Strong coupling expansion of QCD

Physics Lessons from pQCD & string and lattice theory

From low pT<2 GeV elliptic flow exp, QGP appears to be a nearly perfect fluid

With viscosity to entropy ratio eta/s ~ 0.1 - 0.2 << perturbative QCD estimates ~ 0.5 - 1.0

9

M.Gyulassy, Wigner, 3/13/15

Shear Viscosity Transport coefficient of a QGP: Lattice QCD vs pQCD vs AdS/CFT N=4 SYM

vs RHIC v2 data constraints

Minimum uncertainty estimate

M.Gyulassy, Wigner, 3/13/15

Bulk IR vs Jet Quenching UV Physics in A+A from SPS to LHC

M.Gyulassy, Wigner, 3/13/15

M Gyulassy LBL 12/09/14

Our v2 Albatross 2

CUJET2.0 Under predicts Jet v2 at LHC

With alpha_max Constrained by RAA(RHIC+LHC) Jiechen Xu, A.Buzzatti, MG, JHEP 1408 (2014) 063

How to reconcile jet transparency for T<<Tc be reconciled with color confinement below Tc and perfect fluidity near Tc?

LBNL, 01/08/2015 Jinfeng Liao

The Theoretical Dilema:

At long wavelength pT<2 GeV QGP seems like almost infinitely coupled fluid

But at small wavelengths pT>10 GeV probes QGP appear perturbative

(This is commen unusual in superfluids and superconductors)

Can we reconcile these contradictory properties of QGP

In some unified calculable way??

We need a "missing link" ingredient like Cooper pairs

that can interpolate between near conformal perturbative QCD short wavelength

And far from conformal nonperturbative confinement physics near Tc ~ 200 MeV

- Part 2: Our proposed sQGMP solution to Part 1 puzzles
- sQPMP = *semi*-chomoelectric(Q+G)+ *semi*-chromomagnetic Monolopes M
- <u>semi</u> color elect quasiparticle Q+G are suppressed by Polyloop and Polyloop^2 (aka Pisarski et el)
- <u>semi</u> color magnetic quasiparticle M that are emergent in vicinity of Tc (aka Liao and Shuryak)
- <u>Semi</u> also in sense that the competiting three Q+G+M Deg. Of Freedom Evolve into perturbative Q+G HTL DOF for T > 3 Tc

A key missing ingredient in both pQCD and AdS/CFT are Hadrons!!

Something must confine color electric q and g degrees of freedom below Tc

The most natural candidate from analogy with condensed matter physics

is the magnetic dual of superconductivity (Nambu, Mandelstam, T'Hooft ~ 1974)

IF QCD has *emergent chromo-magnetic monopole* degrees of freedom near Tc And *IF* they condense below Tc (like Cooper pairs do in superconductors) Then they can provide the missing sQGMP link physics between

the T >> Tc asymptotic pQCG wQGP world

and

the T<< Tc confined color neutral HRG world

Could critical scattering on electronopoles and mag monopoles explain perfect fluidity near Tc? (aka Liao and Suryak ?)

Slide from Jinfeng Liao on

Dual Superconductivity

Dual superconductivity is a promising mechanism for quark confinement. [Y.Nambu (1974). G.'t Hooft, (1975). S.Mandelstam, (1976) A.M. Polyakov (1975)]

superconductor

- Condensation of electric charges (Cooper pairs)
- Meissner effect: Abrikosov string (magnetic flux tube) connecting monopole and anti-monopole
- Linear potential between monopoles

dual superconductor

- Condensation of magnetic monopoles
- Dual Meissner effect: formation of a hadron string (chromo-electric flux tube) connecting quark and antiquark
- Linear potential between quarks

Akihiro, Shibata, Trento 2013

ArXiv:1409.1599 : <u>a 277 page review !</u> Also arXiv:1412.8009 [hep-lat] Status of QCD Monopoles Still Uncertain P-209 And Hotly Debated After 40 !! 114-23

Quark confinement: dual superconductor picture based on a non-Abelian Stokes theorem and reformulations of Yang-Mills theory

Kei-Ichi Kondoa, Seikou Katob, Akihiro Shibatac, Toru Shinoharad

Abstract

The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator.

For the fundamental quark for SU(3), the maximal stability group is U(2), which is different from the maximal torus group $U(1) \times U(1)$ suggested from the Abelian projection. Therefore, the chromomagnetic monopole inherent in the Wilson loop operator responsible for confinement of quarks in the fundamental representation is the non-Abelian magnetic monopole, which is distinct from the Abelian magnetic monopole for the SU(2) case. Therefore, we claim that the mechanism for quark confinement for SU(N) ($N \ge 3$) is the non-Abelian dual superconductivity caused by condensation of non-Abelian magnetic monopoles. We give some theoretical considerations and numerical results supporting this picture. Finally, we discuss some issues to be investigated in future studies.

The Liao-Shuryak sQGMP Scenario

Slide from Jinfeng Liao, APS DNP Hawaii 2014

Lattice QCD: Polyakov Loop, EOS, Screening Masses

 The CUJET3.0 implementations of electric and magnetic components are constrained by available lattice data. No new free parameters introduced
 LBNL, 01/08/2015 J. Liao <u>sQGP Kinetic theory</u> => inverse connection between eta/s and the jet transport qhat(T,E) field

Jiechen Xu, Jinfeng Liao, MG arXiv:1411.3673 [hep-ph]

We now turn to the shear viscosity. As in [4–6], an estimate of shear viscosity per entropy density η/s can be derived from kinetic theory in the weak coupling limit:

$$\eta/s = \frac{1}{s} \frac{4}{15} \sum_{a} \rho_a \langle p \rangle_a \lambda_a^{tr}$$

$$= \frac{4T}{5s} \sum_{a} \rho_a \left(\sum_{b} \rho_b \int_0^{\langle S_{ab} \rangle/2} dq^2 \frac{4q^2}{\langle S_{ab} \rangle} \frac{d\sigma_{ab}}{dq^2} \right)^{-1}$$

$$= \frac{18T^3}{5s} \sum_{a} \rho_a / \hat{q}_a (T, E = 3T) \quad . \tag{9}$$

In sQGMP , a=1,2,3	
(1) L suppresed quarks	Q
(2) L ² suppressed glue	G
(3) emergent mag monopoles	Μ

Extracting jet transport coefficient from jet quenching at RHIC and LHC : arXiv:1312.5003 Phys.Rev. C90 (2014) 1, 014909

Karen M. Burke,¹ Alessandro Buzzatti,^{2,3} Ningbo Chang,^{4,5} Charles Gale,⁶ Miklos Gyulassy,³ Ulrich Heinz,⁷ Sangyong Jeon,⁶ Abhijit Majumder,¹ Berndt Müller,⁸ Guang-You Qin,^{5,1} Björn Schenke,⁸ Chun Shen,⁷ Xin-Nian Wang,^{5,2} Jiechen Xu,³ Clint Young,⁶ and Hanzhong Zhang⁵

(The JET Collaboration) Posted 11/17/13

CUJET2.0 sQDP+DGLV+VISH2

$$\alpha_{\rm s}(Q^2) = \min[\alpha_{max}, 2\pi/9\log(Q^2/\Lambda^2)]$$

$$\begin{aligned} x \frac{dN_{Q \to Q+g}}{dx}(\mathbf{r},\phi) &= \int d\tau \rho(\mathbf{r}+\hat{\mathbf{n}}(\phi)\tau,\tau) \int \frac{d^2 \mathbf{q}_T}{\pi} \frac{d^2 \sigma}{d^2 \mathbf{q}_T} \int \frac{d^2 \mathbf{k}_T}{\pi} \underline{\alpha_{\mathrm{s}}(k_T^2/(x(1-x)))} \\ &\times \frac{12(\mathbf{k}_T+\mathbf{q}_T)}{(\mathbf{k}_T+\mathbf{q}_T)^2+\chi(\tau)} \cdot \left(\frac{(\mathbf{k}_T+\mathbf{q}_T)}{(\mathbf{k}_T+\mathbf{q}_T)^2+\chi(\tau)} - \frac{\mathbf{k}_T}{\mathbf{k}_T^2+\chi(\tau)}\right) \left(1 - \cos\left[\frac{(\mathbf{k}_T+\mathbf{q}_T)^2+\chi(\tau)}{2x_+E} \tau\right]\right), \end{aligned}$$

where the effective running differential cross section is

$$\frac{d^2\sigma}{d^2\mathbf{q}_T} = \frac{\alpha_{\rm s}^2(\mathbf{q}_T^2)}{(\mathbf{q}_T^2 + f_E^2\mu^2(\tau))(\mathbf{q}_T^2 + f_M^2\mu^2(\tau))} , \qquad (3)$$

that runs with both q_T and the local temperature through $\mu^2(\tau) = 4\pi \alpha_{\rm s} (4T^2)T^2$, the local HTL color electric Debye screening mass squared in a pure gluonic plasma with local temperature $T(\tau) \propto \rho^{1/3}(\mathbf{r},\tau)$ along the jet path $\mathbf{r}(\tau)$ through the plasma.

M.Gyulassy, Wigner, 3/13/15

M.Gyulassy, Wigner, 3/13/15

CUJET3.0 = CUJET2.0 + semi-QGP + Mag. Monopoles

CUJET3.0 with sQGMP simultaneously describes (RHIC+LHC) * $(R_{AA}+v_2)$ * (light + heavy)

JX, J. Liao, M. Gyulassy, arXiv:1411.3673

The combined set of observables (*RHIC+LHC*) * ($R_{AA}+V_{2}$) * (*pion+D+B*)

are consistently accounted for (within present experimental errors) in the CUJET3.0 sQGMP framework using lattice QCD constrained near-Tc enhanced jet-medium coupling and a VISH2+1 evolved semi-QGMP decomposition that reduces to HTL wQGP at high T>3Tc

Open charm and beauty at high $p_T R_{AA}$ and v_2 at RHIC and LHC (20-30% centrality) from CUJET3.0

LBNL, 01/08/2015 J. Xu

CUJET3.0: HF Decay Electron RAA & v2

LBNL, 01/08/2015, J.Xu

32

```
Summary :
```

(1) The combined 12 sets of observables,

(RHIC + LHC) * (RAA + V2) * (pion + D + B),

are consistently accounted in the CUJET3.0 sQGMP framework using a lattice QCD constrained Q, G and M decomposition of bulk constrained VISH2+1 hydrodynamic evolved fluids.

(2) Most remarkably, for the first time, the CUJET3.0 framework Can solve the past apparent paradoxical inconsistency between previous perturbative QCD based high E>10 jet transport field, qhat(E,T), and the small kinetic theory eta/s (~ sum n_a/qhat_a(3T,T)) needed to account for bulk "Perfect Fluidity".

In sQGMP is due to the 1/alf_s enhancement of color electric interactions with emergent nonabelian color magnetic monopoles near Tc together With the Polyakov line suppression of color electric components