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Introduction

● Entanglement is a characteristic feature of
quantum many-body systems

● Simplest case: ground state scenario
● Emergence of area laws
● Best understood in 1D integrable systems
● In particular: free lattice models
● Keyword: reduced density matrix (RDM)
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Background

● Quantum system in its pure ground state:

● Arbitrary bipartition into subsystems 1 & 2

● Schmidt decomposition

● Reduced density matrix:

● Diagonal form follows from SD

● Entanglement entropy:



  

Models

● Free fermion / tight-binding / hopping models

● Harmonic oscillator chain

● XY spin chain in transverse field



  

General result

● RDM can be written as

● Thermal form with effective free-particle Hamiltonian

● This is NOT the subsystem Hamiltonian!

● Common term: entanglement Hamiltonian

● The problem is thus reduced to the study of



  

Methods I: integrate out part of variables

● Works well for coupled oscillators

● Ground state is a Gaussian

● Integral over “outside” variables

● Diagonaliztion gives single exponential

● Can also be used for free fermions with Grassman
variables representation
Bombelli et. al. '86, Srednicki '93
Peschel & Chung '99, Chung & Peschel '00
Cheong & Henley '04



  

Methods II: via correlation functions

● Free fermions: ground state is a Slater determinant

● Correlations factorize:

● In a subsystem, RDM should give the same result!

● This is guaranteed by Wick's theorem if

● Reduced correlation matrix  recovered if

● Eigenvalues follow from

Vidal et.al. '03, Peschel '03



  

Methods II: via correlation functions

● Technique can be applied to models with pair
creation/annihilation (e.g. XY chain)

● “Anomalous” correlations should be included

● For oscillators one needs the correlations of position
and momenta

● Full spectrum of RDM is obtained via eigenvalue
problem of LxL matrices!



  

Methods III: via classical statistical models

● Suppose that GS of a quantum chain can be obtained by
applying an operator T many times

● If T is transfer matrix RDM is a partition function

● Transverse Ising chain 2D Ising model
  Oscillator chain 2D Gaussian model



  

Methods III: via classical statistical models

● Partition function via Baxter's corner transfer matrix (CTM)

● CTMs are known for several non-critical models

● Half-chain RDM spectra can be directly obtained



  

Spectra I: 1D non-critical chains

● TI and XY chains:

● Equidistant levels with spacing

● No size-dependence (area-law)

● TI chain

● Similar results for XY chain

Peschel, Kaulke, Legeza '99, Peschel '04, Its, Jin, Korepin '05



  

Spectra I: 1D non-critical chains

● Single-particle and total RDM eigenvalues of TI chain

● Asymptotic decay of total eigenvalues

Okunishi, Hieida, Akutsu '99



  

Spectra II: 1D critical chains

● Segment in half-filled infinite hopping chain

● Eigenvalues follow from correlation matrix

● Asymptotic formula

● Scales with system size logarithmic violation of area-law

Peschel '04



  

Spectra II: 1D critical chains

● Spectra for different fillings / number of Fermi seas

● Varying the filling moves the spectra up and down but
leaves the slope unchanged

● Multiple Fermi-seas lead to (quasi-)degeneracies and to
increase of entanglement

Keating, Mezzadri '04, Eisler, Zimborás '05



  

Spectra III: 1D critical chains with defects

● Critical TI / oscillator chain with a bond defect

● Representation of RDM via conformal mapping

● To calculate: transfer matrix for 2D Ising / Gaussian model
on a strip with defect lines



  

Spectra III: 1D critical chains with defects

Fermions Bosons

Parameter s corresponds to the transmission amplitude of the defect!

Eisler, Peschel '10, Peschel, Eisler '12



  

Spectra IV: 2D non-critical systems

● One-half of a strip of oscillators

● Perpendicular Fourier-transform

● Asymptotic formula for the
isotropic case

● Spacing depends on the number of rows

● Manifestation of the area law



  

Spectra V: 2D critical systems

● Rectangular subsystem in infinite planar hopping model

● Vertical scaling collapse after multiplying by ln(L)

● Hints at area law violation at criticality!



  

Entanglement entropy: non-critical case

● Thermodynamic formula for fermions (+) and bosons (-)

● Exact formulas for 1D non-critical half-chains

● Becomes large close to the critical point

● Correlation length  appears in logarithm

fermions
(disordered region)

bosons

c=1/2 (TI chain)
c=1 (bosons)



  

Entanglement entropy: critical case

Jin & Korepin '04

● Entropy of a segment of length L in infinite hopping chain

● Integrals can be evaluated
● Same result can be found by asymptotic analysis of

Toeplitz determinants with Fisher-Hartwig symbols
● Agrees with conformal field theory (CFT) prediction

● Universality: central charge of CFT appears
● Formula can be extended to finite-size systems

=2 infinite chain
=1 semi-infinite chain

Calabrese & Cardy '04



  

Entanglement entropy: 2D case

● Non-critical half-strip of oscillators strict area-law

● Critical hopping model S ~ M ln(L)

● Area-law is violated in general D dimensions if the
Fermi-surface is finite (scales with LD-1)

● Entropy is given using Widom's conjecture

Gioev, Klich '06, Wolf '06, Farkas, Zimborás '07



  

Entanglement entropy: chains with defects

Fermions Bosons

All the prefactors are available analytically!

Eisler, Peschel '10, Peschel, Eisler '12



  

Single-particle wavefunctions

● Eigenvectors of the reduced correlation matrix C

● Enhanced amplitude near boundaries for low-lying eigenvalues

● Effect less pronounced for non-critical case

● Spheroidal functions / sequences

dimerized homogeneous

Slepian '65, Eisler, Peschel '13



  

Entanglement Hamiltonian

● Explicit form for non-critical TI half-chain from CTM approach

● Numerical results for hopping models
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