Entanglement and correlations: an introduction

 a full-of-typos versionn :)
Szilárd Szalay

Theoretical Solid State Physics Department, Wigner Research Centre for Physics

4 September 2014

Witcmer

Entanglement Day(s) 2014, Wigner FK SZFI, Budapest info: http://indico.kfki.hu/conferenceDisplay.py?confId=206

Outline

(1) Introduction

- Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions
- Bipartite systems
- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations
\bigcirc
References

Quantum correlations

superposition principle: quantum systems behave nonclassically

- one single system: uncertainty relations
- composite systems: nonclassical correlations (discord, entanglement) even pure joint state may have mixed marginals
manybody systems: "physics of strongly correlated systems"
- correlation structure of (ground) states manifests itself also in macroscopic physical properties
- area law for correlations
fewbody systems: "quantum information theory"
- efficient q. algorithms, q. secure key sharing, q. teleportation
- "quantum correlation is a resource"

Our approach

discrete finite systems

- classical: configuration spaces of finite points (coin: 2, dice: 6,...)
- quantum: finite-dimensional Hilbert spaces
- geometrical "insight"
- the conceptual questions of quantum mechanics are not buried under hard problems of functional analysis :)
- still not a toy model!
quantum correlations as I like it
- of fundamental importance, beautiful, interesting and deep problems
- classical vs. quantum systems from information theoretical approach
- works in the lab too

Recall I. - States of a classical system

we know it certainly / all are the same: pure states

- $d<\infty$ mutually exclusive events:
e.g. X prob. var. can take d different values $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$
- d different pure states: $\mapsto \delta_{j}=(0, \ldots, 1, \ldots, 0)$
e.g., when $X=x_{j}$ with certainty
- expectation value is trivially $\langle X\rangle=x_{j}$ in pure state
we are uncertain / have an ensemble: mixed states
- different pure states $\boldsymbol{\delta}_{j}$, with p_{j} relative frequencies
- expectation value: $\langle X\rangle=\sum_{j} p_{j} x_{j}$
- probability density (mixed state): $\mathbf{p}=\left(p_{1}, \ldots, p_{d}\right)=\sum_{j} p_{j} \delta_{j} \in \Delta$
- after measuring X to be x_{i}, state collapses: $\mathbf{p} \mapsto \boldsymbol{\delta}_{i}$

Recall II. - States of a quantum system

we know it certainly / all are the same: pure states

- quantum system $\mapsto \mathcal{H}$ Hilbert space, $d=\operatorname{dim} \mathcal{H}<\infty$
- dyamical variables (observables): its values are x_{i}, take $\left\{\left|\xi_{i}\right\rangle \in \mathcal{H}\right\}$ orthonormalized vectors, $X=\sum_{i} x_{i}\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right| \in \operatorname{Lin} \mathcal{H}$ normal operator there exists noncommuting ones, $[X, Y] \neq 0$
- state vectors: $|\psi\rangle \in \mathcal{H},(\|\psi\|=1)$ then $|\psi\rangle=\sum_{i}\left\langle\xi_{i} \mid \psi\right\rangle\left|\xi_{i}\right\rangle$
- probability (!) of ith outcome (Born's rule): $q_{i}=\left|\left\langle\xi_{i} \mid \psi\right\rangle\right|^{2}$
- expectation value: $\langle X\rangle=\sum_{j} q_{j} x_{j}=\langle\psi| X|\psi\rangle$ nontrivial
we are uncertain / have an ensemble: mixed states
- different $\left|\psi_{j}\right\rangle \in \mathcal{H}$ state vectors, with p_{j} relative frequencies
- expectation value: $\langle X\rangle=\sum_{j} p_{j}\left\langle\psi_{j}\right| X\left|\psi_{j}\right\rangle=\operatorname{Tr}(\varrho X)$
- density operator (mixed state): $\varrho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \in \mathcal{D} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}$
- after measuring X to be x_{i}, state collapses $\varrho \mapsto\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|$

Recall III. - Quantum and classical "averages"

doing a measurement

- $X=\sum_{i} x_{i}\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|$ observable
- measurement statistics: $\boldsymbol{q}_{i}=\left|\left\langle\xi_{i} \mid \psi\right\rangle\right|^{2}$, or $\boldsymbol{q}_{i}=\operatorname{Tr}\left(\varrho\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|\right)$
- state collapses into the pure state $\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|$
- take a set $\left\{\left|\varphi_{j}\right\rangle \in \mathcal{H}\right\}$ of orthonormalized state vectors, and...
... in \mathcal{H} : linear combination (superposition)
- take $c_{j} \in \mathbb{C},\|c\|_{2}=1$

$$
|\varphi\rangle:=\sum_{j} c_{j}\left|\varphi_{j}\right\rangle
$$

- measurement statistics:

$$
q_{i}=\left|\sum_{j} c_{j}\left\langle\xi_{i} \mid \varphi_{j}\right\rangle\right|^{2}
$$

- interference!
... in \mathcal{D} : convex combination (mixture, "weighted average")
- take $0 \leq p_{j} \in \mathbb{R},\|p\|_{1}=1$

$$
\varrho:=\sum_{j} p_{j}\left|\varphi_{j}\right\rangle\left\langle\varphi_{j}\right|
$$

- measurement statistics:

$$
q_{i}=\sum_{j} p_{j}\left|\left\langle\xi_{i} \mid \varphi_{j}\right\rangle\right|^{2}
$$

- no interference!

Recall IV. - Classical "composite systems"

two observables in classical case

- two sets of mutually exclusive events $\left(d_{1}, d_{2}\right)$:
e.g. X and Y prob. vars. can take d_{1} resp. d_{2} different values
- $d_{1} \times d_{2}$ different pure states: $\boldsymbol{\delta}_{12 ; i j}=(0, \ldots, 1, \ldots, 0) \in \mathbb{R}^{d_{1}} \otimes \mathbb{R}^{d_{2}}$ e.g. $X=x_{i}$ and $Y=y_{j}$ with certainty
- different pure states $\boldsymbol{\delta}_{12 ; i j}$, with $p_{12 ; i j}$ relative frequencies, $\mapsto j$ joint prob. dens. (mixed state): $\mathbf{p}_{12}=\sum_{i j} p_{12 ; i j} \boldsymbol{\delta}_{12 ; i j} \in \Delta_{12} \subset \mathbb{R}^{d_{1}} \otimes \mathbb{R}^{d_{2}}$
- marginal state: $\mathbf{p}_{12} \mapsto \mathbf{p}_{2}=\operatorname{Sum}_{1} \mathbf{p}_{12}$, with $\left(\mathbf{p}_{2}\right)_{j}=p_{2, j}=\sum_{i} p_{12 ; i j}$
- after measuring X to be x_{i}, state collapses $\mathbf{p}_{12} \mapsto \mathbf{p}_{2 \mid i}$: conditional state with $\left(\mathbf{p}_{2 \mid i}\right)_{j}=p_{12 ; i j} / p_{1 ; i}$ (Bayes')
- doesn't matter if the two sets of events (prob. var.) correspond - to two different properties of the same system, or - to (same or different) properties of two different systems

Recall V. - Quantum composite systems

two observables in quantum case

- does matter if the two sets of events (observables) correspond
- to two different properties of the same system, or
- to (same or different) properties of two different systems
- in the former case, the observables usually $[X, Y] \neq 0$
- in the latter case, the observables $[X \otimes \mathbf{I}, \mathbf{I} \otimes Y]=0$

two subsystems

- two subsystems, $\mathcal{H}_{1}, \mathcal{H}_{2}$ Hilbert spaces, $d_{a}=\operatorname{dim} \mathcal{H}_{a}$
- state vectors: $\left|\psi_{12}\right\rangle \in \mathcal{H}_{1} \otimes \mathcal{H}_{2}=\mathcal{H}_{12}$
- mixed state: $\varrho_{12}=\sum_{i} p_{i}\left|\psi_{12 ; i}\right\rangle\left\langle\psi_{12 ; i}\right| \in \mathcal{D}_{12} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{1} \otimes \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{2}$
- marginal state: $\varrho_{12} \mapsto \varrho_{2}=\operatorname{Tr}_{1} \varrho_{12}$, with $\left(\varrho_{2}\right)^{j}{ }_{j^{\prime}}=\sum_{i} \varrho^{i}{ }_{i j^{\prime}}$,
- conditional state (of subsystem!): ill-defined in general, can only be defined w.r.t. measurement

- Introduction

(2) Single systems

- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions
- Bipartite systems
- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

States of a system - Classical case

in general

- pure states: $\boldsymbol{\delta}_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{d}$
- ensemble of systems in δ_{j} with p_{j} relative frequencies \mapsto mixed states: $\mathbf{p}=\left(p_{1}, \ldots, p_{d}\right)=\sum_{j} p_{j} \boldsymbol{\delta}_{j} \in \Delta \subset \mathbb{R}^{d}$
- Δ simplex, the convex hull of the pure states: $\Delta=\operatorname{Conv}\left\{\delta_{j}\right\}$
- finite number (d) of pure states, decomposition is unique!
- equivalently, $\Delta=\left\{\mathbf{p} \in \mathbb{R}^{d} \mid \mathbf{p} \geq 0\right.$, Sum $\left.\mathbf{p}=1\right\}$

$$
\begin{aligned}
& \text { example: bit }(d=2) \\
& \text { o pure states: } \boldsymbol{\delta}_{1}=(1,0), \boldsymbol{\delta}_{2}=(0,1) \text {, } \\
& \text { o states } \mathbf{p}=\left(p_{1}, p_{2}\right) \\
& \text { o pure states: } p_{1}=1 \text { or } p_{2}=1 \\
& \text { o center: }\left(\frac{1}{2}, \frac{1}{2}\right) \text { "white noise" }
\end{aligned}
$$

States of a system - Classical case

in general

- pure states: $\boldsymbol{\delta}_{j}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{d}$
- ensemble of systems in δ_{j} with p_{j} relative frequencies \mapsto mixed states: $\mathbf{p}=\left(p_{1}, \ldots, p_{d}\right)=\sum_{j} p_{j} \boldsymbol{\delta}_{j} \in \Delta \subset \mathbb{R}^{d}$
- Δ simplex, the convex hull of the pure states: $\Delta=\operatorname{Conv}\left\{\delta_{j}\right\}$
- finite number (d) of pure states, decomposition is unique!
- equivalently, $\Delta=\left\{\mathbf{p} \in \mathbb{R}^{d} \mid \mathbf{p} \geq 0\right.$, Sum $\left.\mathbf{p}=1\right\}$

example: trit $(d=3)$
- pure states: $\boldsymbol{\delta}_{1}=(1,0,0), \ldots$
- states $\mathbf{p}=\left(p_{1}, p_{2}, p_{3}\right)$
- pure states: p_{1} or p_{2} or $p_{3}=1$
- center: $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ "white noise"

States of a system - Quantum case

in general

- pure states: $\pi=|\psi\rangle\langle\psi| \in \mathcal{P} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H} \quad$ (geom.: $\mathcal{P} \cong \mathbb{C P}^{d-1}$)
- ensemble of systems in π_{j} with p_{j} relative frequencies \mapsto mixed states: $\varrho=\sum_{j} p_{j} \pi_{j} \in \mathcal{D} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H} \quad\left(\mathcal{D} \subset \mathbb{R}^{d^{2}-1}\right)$
- \mathcal{D} convex body, the convex hull of the pure states: $\mathcal{D}=\operatorname{Conv} \mathcal{P}$
- continuously many pure states, decomposition is not unique!
- equivalently, $\mathcal{D}=\left\{\varrho \in \operatorname{LinsA}_{\mathrm{SA}} \mathcal{H} \mid \varrho \geq 0, \operatorname{Tr} \varrho=1\right\}$

Szilárd Szalay (SZFI)
example: qubit $(d=2)$

- $\mathcal{P}\left(\mathbb{C}^{2}\right) \cong \mathbb{C} P^{1} \cong S^{2}$: Bloch sphere
- \mathbf{r} Bloch vector $\varrho=\frac{1}{2}\left(\mathbf{I}+\sum_{\mu} r_{\mu} \sigma_{\mu}\right)$
- pure st.: $|\mathbf{r}|=1$, mixed st.: $|\mathbf{r}|<1$
- center: $|\mathbf{r}|=0$ "white noise"

States of a system - Quantum case

```
in general:
\(\operatorname{dim} \mathcal{D}=d^{2}-1\), \(\operatorname{dim} \mathcal{P}=2(d-1)\)
```

example: qudit $(d>2)$

- set of pure states: $\mathcal{P} \cong \mathbb{C} P^{d-1} \cong S^{2 d-1} / S^{1}$
not a sphere anymore
- but a subset (of zero measure) on the surface of a sphere, its center: white noise $\frac{1}{d}$ I
- set of states: $\mathcal{D}=\operatorname{Conv} \mathcal{P}$
- inside: rk $\varrho=d$
- on the boundary: rk $\varrho<d$ (not necessarily pure states)
- pure states (\mathcal{P}) : rk $\varrho=1$ (extremal points)

States of a system - Quantum case

special: 3D-section containing four orthogonal pure states is a tetrahedron (simplex)

in general, intersection with a hyperplane is not even a polytope
example: qudit $(d>2)$

- set of pure states: $\mathcal{P} \cong \mathbb{C} P^{d-1} \cong S^{2 d-1} / S^{1}$ not a sphere anymore
- but a subset (of zero measure) on the surface of a sphere, its center: white noise $\frac{1}{d}$ I
- set of states: $\mathcal{D}=\operatorname{Conv} \mathcal{P}$
- inside: rk $\varrho=d$
- on the boundary: $\mathrm{rk} \varrho<d$ (not necessarily pure states)
- pure states (\mathcal{P}) : rk $\varrho=1$ (extremal points)
(2) Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions

Bipartite systems

- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Maps of states - Overview

in general

- stochastic map: $\Delta \rightarrow \Delta^{\prime}$
- TPCP map: $\mathcal{D} \rightarrow \mathcal{D}^{\prime}$
- basis-dependent inclusion: $\Delta \rightarrow \mathcal{D}^{\prime}$
- measurement (POVM): $\mathcal{D} \rightarrow \Delta^{\prime}$
example: bit and qubit $(d=2)$

Transformations of states - Classical case

in general

- recall: $\Delta=\left\{\mathbf{p} \in \mathbb{R}^{d} \mid \mathbf{p} \geq 0\right.$, Sum $\left.\mathbf{p}=1\right\}$
- $A: \Delta \rightarrow \Delta^{\prime}$ map is a stochastic map (Markov), i.e.

$$
\mathbf{p} \longmapsto \mathbf{p}^{\prime}=A(\mathbf{p}), \quad A(\mathbf{p}) \geq 0, \operatorname{Sum}(A \mathbf{p})=1
$$

- A bistochastic if stochastic and unital: from white noise it can make only white noise $A\left(\frac{1}{d} \mathbf{1}\right)=\frac{1}{d} \mathbf{1}\left(d=d^{\prime}\right.$ enforced automatically)
- representation by stochastic matrix $A: A_{i j} \geq 0, \sum_{i} A_{i j}=1$, if bistochastic then also $\sum_{j} A_{i j}=1$

examples

- bit $(d=2): A(t)=\left[\begin{array}{cc}t & 1-t \\ 1-t & t\end{array}\right]$ (also bistochastic)
- time evolution of a closed system: $A=R_{\sigma}$ permut. matrix $\left(\sigma \in S_{d}\right)$
- adding an uncorrelated ancilla, or dropping it

Transformations of states - Quantum case

 in general- recall: $\mathcal{D}=\left\{\varrho \in \operatorname{Lin}_{\text {SA }} \mathcal{H} \mid \varrho \geq 0, \operatorname{Tr} \varrho=1\right\}$
- $\mathcal{E}: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ map is a trace preserving complete positive map (TPCP)

$$
\varrho \longmapsto \varrho^{\prime}=\mathcal{E}(\varrho), \quad \mathcal{E}(\varrho) \geq 0, \operatorname{Tr} \mathcal{E}(\varrho)=1, \mathcal{E} \otimes \mathcal{I}(\omega) \geq 0
$$

- complete positivity: preserves the positivity of not only the system, but also the system and its (arbitrary) environment (quantum!)
- \mathcal{E} bistochastic if stochastic and unital: from white noise it can make only white noise $\mathcal{E}\left(\frac{1}{d} \mathbf{I}\right)=\frac{1}{d} \mathbf{I}\left(d=d^{\prime}\right.$ enforced automatically)
- Kraus representation: $\mathcal{E}(\varrho)=\sum_{i} K_{i} \varrho K_{i}^{\dagger}$, with $\sum_{i} K_{i}^{\dagger} K_{i}=\mathbf{I}$, if bistochastic then also $\sum_{i} K_{i} K_{i}^{\dagger}=\mathbf{I}$

examples

- time evolution of a closed system: $K=U$ unitary, $\mathcal{E}(\varrho)=U \varrho U^{\dagger}$
- adding an uncorrelated ancilla, or dropping it

Measurements - Classical case

in general

- observable: $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)$
- state: $\mathbf{p}=\left(p_{1}, \ldots, p_{d}\right)=\sum_{i} p_{i} \boldsymbol{\delta}_{i}$
- observing x_{i} outcome: $\mathbf{p} \mapsto \mathbf{p}_{i}^{\prime}=\boldsymbol{\delta}_{i}$ collapses, this is the result of a projection $P_{i}=\boldsymbol{\delta}_{i} \otimes \boldsymbol{\delta}_{i}^{\mathrm{T}}$

$$
\mathbf{p} \xrightarrow{\stackrel{\text { sel. }}{\longmapsto}}\left\{\begin{array}{l}
\mathbf{p}_{(i)}^{\prime}=\frac{1}{q_{(i)}} P_{i} \mathbf{p} \equiv \boldsymbol{\delta}_{i} \\
q_{(i)}=\text { Sum } P_{i} \mathbf{p} \equiv p_{i}
\end{array}\right\} \quad \stackrel{\text { mix. }}{\longmapsto} \quad \mathbf{p}^{\prime}=\sum_{i} q_{(i)} \mathbf{p}_{(i)}^{\prime} \equiv \mathbf{p}
$$

- non-selective measurement: doesn't disturb the state
- selective measurement: pure states aren't disturbed

Measurements - Quantum case

in general

- observable: $X=\sum_{i} x_{i}\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|$
- state: $\varrho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
- observing x_{i} outcome: $\varrho \mapsto \varrho_{i}^{\prime}=\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|$ collapses, this is the result of a projection $P_{i}(\cdot) P_{i}^{\dagger}=\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|(\cdot)\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|$

$$
\begin{array}{r}
\stackrel{\text { sel. }}{\longmapsto}\left\{\begin{array}{l}
\left.\begin{array}{l}
\varrho_{(i)}^{\prime}= \\
q_{(i)} \\
q_{(i)}=\operatorname{Tr} P_{i} \varrho P_{i}^{\dagger} \equiv \varrho_{i}^{i}
\end{array}\right\} \\
\stackrel{\text { mix. }}{\longmapsto} \quad \varrho_{i}^{\prime}=\sum_{i} q_{(i)} \varrho_{(i)}^{\prime}=\sum_{i} P_{i} \varrho P_{i}^{\dagger} \not \equiv \varrho
\end{array}\right\}
\end{array}
$$

- even non-selective measurement disturbs the state
- even pure states are disturbed by selective measurement

Generalized measurements - Classical case

in general

- indirect projective measurements (meas. of an interacting ancilla)

$$
\begin{aligned}
\mathbf{p} \xrightarrow{\text { sel. }} & \left\{\begin{array}{l}
\mathbf{p}_{(i)}^{\prime}=\frac{1}{q_{(i)}} \operatorname{Sum}_{\text {Anc }}\left(\mathbf{1} \otimes P_{i}\right) R\left(\mathbf{p} \otimes \mathbf{p}_{\mathrm{Anc}}\right)=\frac{1}{q_{(i)}} M_{i} \mathbf{p} \\
q_{(i)}=\operatorname{Sum}\left(\mathbf{1} \otimes P_{i}\right) R\left(\mathbf{p} \otimes \mathbf{p}_{\mathrm{Anc}}\right)=\operatorname{Sum} M_{i} \mathbf{p}
\end{array}\right\} \\
& \stackrel{\text { mix. }}{\longmapsto} \mathbf{p}^{\prime}=\sum_{i} q_{(i)} \mathbf{p}_{(i)}^{\prime}=\operatorname{Sum}_{\mathrm{Anc}} R\left(\mathbf{p} \otimes \mathbf{p}_{\mathrm{Anc}}\right)=M \mathbf{p}
\end{aligned}
$$

- outcomes, labelled by i, are given by sum-non-increasing stochastic maps M_{i} (instrument), for which $M=\sum_{i} M_{i}$ is (sum-preserving) stochastic
- even non-selective measurement disturbs the state
- even pure states are disturbed by selective measurement

Generalized measurements - Quantum case

 in general- indirect projective measurements (meas. of an interacting ancilla)

$$
\begin{aligned}
& \varrho \stackrel{\text { sel. }}{\longmapsto}\left\{\begin{aligned}
\varrho_{(i)}^{\prime} & =\frac{1}{q_{(i)}} \operatorname{Tr}_{\text {Anc }}\left(\mathbf{I} \otimes P_{i}\right) U\left(\varrho \otimes \varrho_{\text {Anc }}\right) U^{\dagger}\left(\mathbf{I} \otimes P_{i}\right)^{\dagger}=\frac{1}{q_{(i)}} \mathcal{M}_{i}(\varrho) \\
q_{(i)} & =\operatorname{Tr}\left(\mathbf{I} \otimes P_{i}\right) U\left(\varrho \otimes \varrho_{\text {Anc }}\right) U^{\dagger}\left(\mathbf{I} \otimes P_{i}\right)^{\dagger}=\operatorname{Tr} \mathcal{M}_{i}(\varrho)
\end{aligned}\right\} \\
& \stackrel{\text { mix. }}{\longmapsto} \varrho^{\prime}=\sum_{i} q_{(i)} \varrho_{(i)}^{\prime}=\operatorname{Tr}_{\text {Anc }} U\left(\varrho \otimes \varrho_{\text {Anc }}\right) U^{\dagger}=\mathcal{M}(\varrho)
\end{aligned}
$$

- outcomes, labelled by i, are given by trace-non-increasing $C P$ maps $\left\{\mathcal{M}_{i}\right\}$ (instrument), for which $\mathcal{M}=\sum_{i} \mathcal{M}_{i}$ is trace-preserving CP
- Positive Operator Valued Measure (POVM): $\left\{E_{i}=\sum_{j} M_{i j}^{\dagger} M_{i j} \geq 0\right\}$
- representation thm. (Naimark's): All such instrument $\left\{\mathcal{M}_{i}\right\}$ can be constructed by suitable ancilla with $\left\{P_{i}\right\}, \varrho_{\text {Anc }}$ and U
- corollary: there are environmental representation of all \mathcal{E} TPCP
(2) Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions

Bipartite systems

- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Mixedness by partial ordering - Classical case

in general

- majorization for classical states:

$$
\mathbf{p} \preceq \mathbf{q} \quad \stackrel{\text { def. }}{\Longleftrightarrow} \quad \sum_{i=1}^{k} p_{i}^{\downarrow} \leq \sum_{i=1}^{k} q_{i}^{\downarrow} \quad \forall k=1,2, \ldots, m,
$$

- partial order, up to permutations, $\frac{1}{d} \mathbf{1} \preceq \mathbf{p} \preceq \boldsymbol{\delta}_{1}$

Mixedness by partial ordering - Quantum case

 in general- given ϱ : spectrum is the purest of any mixing weights, $\mathbf{p} \preceq$ Spect ϱ
- majorization for quantum states:

$$
\varrho \preceq \omega \quad \stackrel{\text { def }}{\Longleftrightarrow} \quad \text { Spect } \varrho \preceq \text { Spect } \omega
$$

- partial order, up to unitaries, $\frac{1}{d} \mathbf{I} \preceq \varrho \preceq|\psi\rangle\langle\psi|=\pi$

example: qubit $(d=2)$
- $\mathcal{P}\left(\mathbb{C}^{2}\right) \cong \mathbb{C} P^{1} \cong S^{2}$: Bloch sphere
- Bloch vector: $\varrho=\frac{1}{2}\left(\mathbf{I}+\sum_{i=1}^{3} r_{i} \sigma_{i}\right)$
- pure states: $|\mathbf{r}|=1$
- center: $|\mathbf{r}|=0$ "white noise"

$$
\circ \varrho \preceq \omega \quad \Longleftrightarrow \quad\left|\mathbf{r}_{\varrho}\right| \leq\left|\mathbf{r}_{\omega}\right|
$$

Mixedness by entropies - Classical case

in general

- mixedness: $f: \Delta \rightarrow \mathbb{R}$ Schur-concave function

$$
\mathbf{p} \preceq \mathbf{q} \quad \Longrightarrow \quad f(\mathbf{p}) \geq f(\mathbf{q})
$$

- entropies:

$$
\begin{aligned}
S(\mathbf{p}) & =-\sum_{i} p_{i} \ln p_{i}, & & \text { Shannon entropy } \\
S_{\alpha}^{\mathrm{R}}(\mathbf{p}) & =\frac{1}{1-\alpha} \ln \sum_{i} p_{i}^{\alpha}, & & \text { Rényi entropy } \\
S_{\alpha}^{\mathrm{Ts}}(\mathbf{p}) & =\frac{1}{1-\alpha}\left(\sum_{i} p_{i}^{\alpha}-1\right), & & \text { Tsallis entropy }
\end{aligned}
$$

- vanish exactly for pure states $\boldsymbol{\delta}_{i}$, taking maxima for white noise $\frac{1}{d} \mathbf{1}$
- Shannon's noiseless coding thm: Shannon entropy $=$ information content

Mixedness by entropies - Quantum case

in general

- mixedness: $f: \mathcal{D} \rightarrow \mathbb{R}$ Schur-concave function

$$
\varrho \preceq \omega \quad \Longrightarrow \quad f(\varrho) \geq f(\omega) .
$$

- given ϱ, spectrum has the lowest entr. $S(\varrho):=\min S(\mathbf{p})=S$ (Spect $\varrho)$
- quantum entropies: entropies of the spectrum

$$
\begin{aligned}
S(\varrho) & =-\operatorname{Tr} \varrho \ln \varrho, & & \text { von Neumann entropy } \\
S_{\alpha}^{\mathrm{R}}(\varrho) & =\frac{1}{1-\alpha} \ln \operatorname{Tr} \varrho^{\alpha}, & & \text { quantum Rényi entropy } \\
S_{\alpha}^{\mathrm{Ts}}(\varrho) & =\frac{1}{1-\alpha}\left(\operatorname{Tr} \varrho^{\alpha}-1\right), & & \text { quantum Tsallis entropy }
\end{aligned}
$$

- vanish exactly for pure states $|\psi\rangle\langle\psi|$, taking max. for white noise $\frac{1}{d} \mathbf{l}$
- Schumacher's noiseless coding thm: von Neumann entropy $=$ quantum information content
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions
- Bipartite systems
- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Distinguishability - Classical case

in general

- relative entropy of $\mathbf{p}, \mathbf{q} \in \Delta$ states

$$
D(\mathbf{p} \| \mathbf{q})=\sum_{i} p_{i}\left(\ln p_{i}-\ln q_{i}\right) \quad \text { Kullback-Leibler divergence }
$$

- there are Rényi, Tsallis generalizations too
- not symmetric, however, still has the most beautiful properties
- nonnegative, vanishes iff $\mathbf{p}=\mathbf{q}$
- Sanov's thm (hypothesis testing): relative entropy $=$ distinguishability

example

- in an experiment described by \mathbf{q}, the probability of that \mathbf{p} is observed after finite n measurements goes $\sim \mathrm{e}^{-n D(\mathbf{p} \| \mathbf{q})}$ for n large
- biased coin: $\mathbf{p}_{\text {biased }}=(1,0)$, fair coin $\mathbf{p}_{\text {fair }}=(1 / 2,1 / 2)$, $D\left(\mathbf{p}_{\text {biased }} \| \mathbf{p}_{\text {fair }}\right)=\ln 2, D\left(\mathbf{p}_{\text {fair }} \| \mathbf{p}_{\text {biased }}\right)=\infty$

Distinguishability - Quantum case

in general

- quantum relative entropy of $\varrho, \omega \in \mathcal{D}$ states

$$
D(\varrho \| \omega)=\operatorname{Tr} \varrho(\ln \varrho-\ln \omega) \quad \text { Umegaki relative entropy }
$$

- ϱ and ω do not usually have common eigenbasis
- there are Rényi, Tsallis generalizations too
- not symmetric, however, still has the most beautiful properties
- nonnegative, vanishes iff $\varrho=\omega$
- quantum Stein's lemma (hypothesis testing): relative entropy $=$ distinguishability (rate of decaying of the probability of confusing)
(2) Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions

Bipartite systems

- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Mixedness and distinguishability - w.r.t. classical maps

compatibility with the notion of mixedness

- Hardy, Littlewood and Pólya's (HLP) lemma: bistochastic maps make states noisier

$$
\mathbf{q} \preceq \mathbf{p} \quad \Longleftrightarrow \exists A \text { bistochastic, such that } \mathbf{q}=A(\mathbf{p}) \longleftrightarrow \mathbf{p}
$$

- corollary: entropies increase in bistochastic Markov chain

$$
A \text { bistochastic } \Longrightarrow S(\mathbf{p}) \leq S(A(\mathbf{p}))
$$

compatibility with the notion of distinguishability

- relative entropy is monotone decreasing under stochastic maps:

$$
\text { A stochastic } \quad \Longrightarrow \quad D(\mathbf{p} \| \mathbf{q}) \geq D(A(\mathbf{p}) \| A(\mathbf{q}))
$$

- distinguishability decreases in Markov chains
- note that $D\left(\mathbf{p} \| \frac{1}{d} \mathbf{1}\right)=\ln d-S(\mathbf{p})$, so HLP follows

Mixedness and distinguishability - w.r.t. quantum maps

compatibility with the notion of mixedness

- quantum Hardy, Littlewood and Pólya's (qHLP) lemma: bistochastic maps make states noisier
$\omega \preceq \varrho \Longleftrightarrow \exists \mathcal{E}$ bistochastic TPCP, such that $\omega=\mathcal{E}(\varrho) \longleftarrow \varrho$
- corollary: entropies increase in the chain of bistochastic TPCP

$$
\mathcal{E} \text { bistochastic TPCP } \quad \Longrightarrow \quad S(\varrho) \leq S(\mathcal{E}(\varrho))
$$

compatibility with the notion of distinguishability

- quantum relative entropy is monotone decreasing under TPCP maps (proven by Lieb, Petz):

$$
\mathcal{E} \mathrm{TPCP} \quad \Longrightarrow \quad D(\varrho \| \omega) \geq D(\mathcal{E}(\varrho) \| \mathcal{E}(\omega))
$$

- distinguishability decreases in the chain of TPCP maps
- note that $D\left(\varrho \| \frac{1}{d} I\right)=\ln d-S(\varrho)$, so qHLP follows

Mixedness and distinguishability - Overview

some abstractions

- the discussed monotonity properties seem to be the most important ones of classical and quantum entropies and relative entropies

A stochastic	\Longrightarrow	$D(\mathbf{p} \\| \mathbf{q}) \geq D(A(\mathbf{p}) \\| A(\mathbf{q}))$
A bistochastic	\Longrightarrow	$S(\mathbf{p}) \leq S(A(\mathbf{p}))$
\mathcal{E} TPCP	\Longrightarrow	$D(\varrho \\| \omega) \geq D(\mathcal{E}(\varrho) \\| \mathcal{E}(\omega))$
\mathcal{E} bistochastic TPCP	\Longrightarrow	$S(\varrho) \leq S(\mathcal{E}(\varrho))$

- generalized classical/quantum entropies and relative entropies, e.g. classical Tsallis/Rényi entropies and Tsallis/Rényi relative entropies; as well as the several extensions to the quantum case.
- moreover, let us stress that the notion of mixedness/distinguishability itself should be considered as a property which increases under bistochastic maps/decreases under stochastic maps

- Introduction

- Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions
- Bipartite systems
- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

States of a bipartite system - Classical case

in general

- we have subsystems 1 and 2 , with pure and mixed states

$$
\begin{aligned}
& \boldsymbol{\delta}_{1 ; i}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{d_{1}}, \boldsymbol{\delta}_{2 ; j}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{d_{2}} \\
& \mathbf{p}_{1}=\sum_{i} p_{1 ; i} \boldsymbol{\delta}_{1 ; i} \in \Delta_{1}=\operatorname{Conv}\left\{\boldsymbol{\delta}_{1 ; i}\right\} \subset \mathbb{R}^{d_{1}}, \\
& \mathbf{p}_{2}=\sum_{j} p_{1 ; j} \boldsymbol{\delta}_{1 ; j} \in \Delta_{2}=\operatorname{Conv}\left\{\boldsymbol{\delta}_{2 ; j}\right\} \subset \mathbb{R}^{d_{2}}
\end{aligned}
$$

- pure states are always of the form $\delta_{12 ; i j}=\delta_{1 ; i} \otimes \boldsymbol{\delta}_{2 ; j} \in \mathbb{R}^{d_{1}} \otimes \mathbb{R}^{d_{2}}$
- mixed states: $\mathbf{p}_{12}=\sum_{i j} p_{12 ; i j} \boldsymbol{\delta}_{12 ; i j} \in \Delta_{12}=\operatorname{Conv}\left\{\boldsymbol{\delta}_{12 ; i j}\right\} \subset \mathbb{R}^{d_{1}} \otimes \mathbb{R}^{d_{2}}$
- decomposition is unique!
- equivalently, $\Delta_{12}=\left\{\mathbf{p}_{12} \in \mathbb{R}^{d_{1}} \otimes \mathbb{R}^{d_{2}} \mid \mathbf{p}_{12} \geq 0\right.$, Sum $\left.\mathbf{p}_{12}=1\right\}$
states of the subsystems
- marginal state: $\mathbf{p}_{12} \mapsto \mathbf{p}_{2}=\operatorname{Sum}_{1} \mathbf{p}_{12}$, with $\left(\mathbf{p}_{2}\right)_{j}=p_{2, j}=\sum_{i} p_{12 ; i j}$
- after measuring event i of subsys. 1, state of 2 collapses $\mathbf{p}_{12} \mapsto \mathbf{p}_{2 \mid i}$: conditional state with $\left(\mathbf{p}_{2 \mid i}\right)_{j}=p_{12 ; i j} / p_{1 ; i}$ (Bayes')

States of a bipartite system - Classical case

example: two bits $\left(d_{1}=d_{2}=2\right)$

- pure states:

$$
\begin{aligned}
& \boldsymbol{\delta}_{12 ; 00}=(1,0) \otimes(1,0)=(1,0,0,0) \\
& \boldsymbol{\delta}_{12 ; 01}=(1,0) \otimes(0,1)=(0,1,0,0) \\
& \boldsymbol{\delta}_{12 ; 10}=(0,1) \otimes(1,0)=(0,0,1,0) \\
& \boldsymbol{\delta}_{12 ; 11}=(0,1) \otimes(1,0)=(0,0,0,1)
\end{aligned}
$$

- mixed states:

$$
\mathbf{p}_{12}=\left(p_{12 ; 00}, p_{12 ; 01}, p_{12 ; 10}, p_{12 ; 11}\right)
$$

- center: $(1 / 4,1 / 4,1 / 4,1 / 4)$ "white noise"

States of a bipartite system - Quantum case

in general

- we have subsystems 1 and 2 , with Hilbert spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$, with pure and mixed states

$$
\begin{aligned}
& \pi_{1}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right| \in \mathcal{P}_{1} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{1}, \pi_{2}=\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right| \in \mathcal{P}_{2} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{2} \\
& \varrho_{1}=\sum_{i} p_{1 ; i} \pi_{1 ; i} \in \mathcal{D}_{1}=\operatorname{Conv} \mathcal{P}_{1} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{1}, \\
& \varrho_{2}=\sum_{i} p_{1 ; i} \pi_{1 ; i} \in \mathcal{D}_{2}=\operatorname{Conv} \mathcal{P}_{2} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{2}
\end{aligned}
$$

- pure states: $\pi_{12}=\left|\psi_{12}\right\rangle\left\langle\psi_{12}\right|$, are usually $\pi_{12} \neq \pi_{1} \otimes \pi_{2}$
- mixed st.: $\varrho=\sum_{i} p_{i} \pi_{12 ; i} \in \mathcal{D}_{12}=\operatorname{Conv} \mathcal{P}_{12} \subset \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{1} \otimes \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{2}$
- decomposition is not unique!
- equivalently, $\mathcal{D}_{12}=\left\{\varrho_{12} \in \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{1} \otimes \operatorname{Lin}_{\mathrm{SA}} \mathcal{H}_{2} \mid \varrho_{12} \geq 0, \operatorname{Tr} \varrho_{12}=1\right\}$
states of the subsystems
- marginal state: $\varrho_{12} \mapsto \varrho_{2}=\operatorname{Tr}_{1} \varrho_{12}$, with $\left(\varrho_{2}\right)^{j}{ }_{j^{\prime}}=\sum_{i} \varrho^{i}{ }_{i}{ }_{i j^{\prime}}$,
- conditional state: depends on measurement, we will see later

States of a bipartite system - Quantum case

example: mixed states of two qubits $\left(d_{1}=d_{2}=2\right)$

- in Pauli basis $\left\{\mathbf{I}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$, coefficients $\mathbf{r}, \mathbf{s} \in \mathbb{R}^{3}, \mathbf{t} \in \mathbb{R}^{3} \otimes \mathbb{R}^{3}$

$$
\varrho_{12}=\frac{1}{4}\left(\mathbf{l} \otimes \mathbf{I}+\sum_{\mu} r_{\mu} \sigma_{\mu} \otimes \mathbf{I}+\sum_{\nu} s_{\nu} \mathbf{l} \otimes \sigma_{\nu}+\sum_{\mu \nu} t_{\mu \nu} \sigma_{\mu} \otimes \sigma_{\nu}\right)
$$

- which parameters $\mathbf{r}, \mathbf{s}, \mathbf{t}$ lead to $\varrho_{12} \geq 0$?
- marginals (one qubit states, \mathbf{r}, \mathbf{s} Bloch vectors):

$$
\varrho_{1}=\operatorname{Tr}_{2} \varrho_{12}=\frac{1}{2}\left(\mathbf{I}+\sum_{\mu} r_{\mu} \sigma_{\mu}\right), \quad \varrho_{2}=\operatorname{Tr}_{1} \varrho_{12}=\frac{1}{2}\left(\mathbf{I}+\sum_{\nu} r_{\nu} \sigma_{\nu}\right)
$$

- special: Pauli-diagonal states, $\mathbf{r}=\mathbf{s}=\mathbf{0}, \mathbf{t}=\operatorname{diag}\left(t_{1}, t_{2}, t_{3}\right)$

$$
\varrho_{12}=\frac{1}{4}\left(\mathbf{I} \otimes \mathbf{I}+\sum_{\mu} t_{\mu} \sigma_{\mu} \otimes \sigma_{\mu}\right)
$$

- $\varrho_{12} \geq 0$ iff $\left(t_{1}, t_{2}, t_{3}\right)$ in a tetrahedron (will see later)

States of a bipartite system - Quantum case: state vectors

Schmidt decomposition of state vectors

- let $\left\{\left|\varphi_{1 ; i}\right\rangle\right\}$ and $\left\{\left|\varphi_{2 ; j}\right\rangle\right\}$ bases in $\mathcal{H}_{1}, \mathcal{H}_{2}$
state vector of bipartite system: $\left|\psi_{12}\right\rangle=\sum_{i, j=1}^{d_{1}, d_{2}} \psi_{12}^{i j}\left|\varphi_{1 ; i}\right\rangle \otimes\left|\varphi_{2 ; j}\right\rangle$
- based on the UDV-decomposition of matrices, by local unitary basis transf., $\left|\psi_{12}\right\rangle$ can be written in the LU-canonical form (Schmidt)

$$
\left|\psi_{12}\right\rangle=\sum_{i=1}^{d_{\min }} \sqrt{\eta_{i}}\left|\varphi_{1 ; i}^{\prime}\right\rangle \otimes\left|\varphi_{2 ; i}^{\prime}\right\rangle
$$

with the Schmidt coefficients $\left\{\sqrt{\eta_{i}}\right\}$, with $\eta_{i} \geq 0, \sum_{i} \eta_{i}=\|\psi\|^{2}=1$

- the states of the subsystems in this basis:

$$
\operatorname{Tr}_{2} \pi_{12}=\pi_{1}=\sum_{i=1}^{d_{\text {min }}} \eta_{i}\left|\varphi_{1 ; i}^{\prime}\right\rangle\left\langle\varphi_{1 ; i}^{\prime}\right| \quad \operatorname{Tr}_{1} \pi_{12}=\pi_{2}=\sum_{i=1}^{d_{\text {min }}} \eta_{i}\left|\varphi_{2 ; i}^{\prime}\right\rangle\left\langle\varphi_{2 ; i}^{\prime}\right|
$$

- so $\eta=$ Spect $\pi_{1}=$ Spect π_{2}, and the Schmidt rank: rk $\psi=\mathrm{rk} \pi_{1}$

States of a bipartite system - Quantum case: state vectors

 examples: state vectors of two qubits $\left(d_{1}=d_{2}=2\right)$- let $\left\{\left|\varphi_{1 ; i}\right\rangle\right\}$ and $\left\{\left|\varphi_{2 ; j}\right\rangle\right\}$ bases in $\mathcal{H}_{1}, \mathcal{H}_{2}$
- Schmidt rank 1: e.g. $|00\rangle$, $\left(\equiv\left|\varphi_{1 ; 0}\right\rangle \otimes\left|\varphi_{2} ; 0\right\rangle\right.$ abbrev.) or $\frac{1}{2}(|00\rangle+|01\rangle+|10\rangle+|11\rangle)=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- Schmidt rank 2: e.g. Bell states

$$
\begin{array}{cc}
\left|\mathrm{B}_{0}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) & \left|\mathrm{B}_{1}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle) \\
\left|\mathrm{B}_{3}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) & \left|\mathrm{B}_{2}\right\rangle=\frac{-i}{\sqrt{2}}(|01\rangle-|10\rangle) \\
\pi_{1}=\operatorname{Tr}_{2}\left(\left|\mathrm{~B}_{i}\right\rangle\left\langle\mathrm{B}_{i}\right|\right)=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1| \sim \frac{1}{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

- in Schmidt form: $\left|\psi_{\vartheta}\right\rangle=\cos \vartheta|00\rangle+\sin \vartheta|11\rangle, 0 \leq \vartheta \leq \pi / 4$,

$$
\pi_{1}=\operatorname{Tr}_{2}\left(\left|\psi_{\vartheta}\right\rangle\left\langle\psi_{\vartheta}\right|\right)=\cos ^{2} \vartheta|0\rangle\langle 0|+\sin ^{2} \vartheta|1\rangle\langle 1| \sim\left[\begin{array}{cc}
\cos ^{2} \vartheta & 0 \\
0 & \sin ^{2} \vartheta
\end{array}\right]
$$

States of a bipartite system - Quantum case

$$
\begin{aligned}
& \text { example: two qubits }\left(d_{1}=d_{2}=2\right) \\
& \text { o special: Bell-diagonal state } \\
& \varrho_{12}=\sum_{i} p_{i}\left|\mathrm{~B}_{i}\right\rangle\left\langle\mathrm{B}_{i}\right| \\
& \text { oit turns out: these are just the same } \\
& \text { as Pauli-diagonal states } \\
& \text { (different parametrizations) } \\
& \qquad \begin{array}{r}
\varrho_{12}=\frac{1}{4}\left(\mathbf{I} \otimes \mathbf{I}+\sum_{\mu} t_{\mu} \sigma_{\mu} \otimes \sigma_{\mu}\right) \\
=\sum_{i} p_{i}\left|\mathrm{~B}_{i}\right\rangle\left\langle\mathrm{B}_{i}\right|
\end{array}
\end{aligned}
$$

States of a bipartite system - Quantum case

$$
\begin{aligned}
& \text { example: two qubits }\left(d_{1}=d_{2}=2\right) \\
& \text { o special: Bell-diagonal state } \\
& \varrho_{12}=\sum_{i} p_{i}\left|\mathrm{~B}_{i}\right\rangle\left\langle\mathrm{B}_{i}\right| \\
& \text { it turns out: these are just the same } \\
& \text { as Pauli-diagonal states } \\
& \text { (different parametrizations) } \\
& \varrho_{12}=\frac{1}{4}\left(\mathbf{I} \otimes \mathbf{I}+\sum_{\mu} t_{\mu} \sigma_{\mu} \otimes \sigma_{\mu}\right) \\
& \quad=\sum_{i} p_{i}\left|\mathrm{~B}_{i}\right\rangle\left\langle\mathrm{B}_{i}\right| \\
& \text { o spec.spec.: Werner states }(\text { noisy Bell }) \text { : } \\
& \varrho_{12}=w\left|\mathrm{~B}_{2}\right\rangle\left\langle\mathrm{B}_{2}\right|+(1-w) \frac{1}{4} \mathbf{I} \otimes \mathbf{I} \\
& \text { for }-1 / 3 \leq w \leq 1
\end{aligned}
$$

- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions

Bipartite systems

- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Local maps of states - Overview

"global" maps of states

- classical case: $A: \Delta_{12} \rightarrow \Delta_{12}^{\prime}$ stochastic maps + measurements
- quantum case: $\mathcal{E}: \mathcal{D}_{12} \rightarrow \mathcal{D}_{12}^{\prime}$ TPCP maps + measurements
"local" maps of states: respecting the subsystem structure
- Local Classical (LC): stoch. maps+class meas. acting on a subsystem (sometimes a bit ill-defined in the quantum case, but useful if it's not)
- Local Quantum (LQ): TPCP maps+meas. acting on a subsystem
and we have also "communication"
- Classical Communication (CC): transferring classical information, e.g., in bits, that is, outcomes of local measurements (the modell of classical interaction among subsystems)
- Quantum Communication (QC): transferring quantum information, e.g., in qbits (the modell of quantum interaction among subsystems)

Local Quantum op. + Classical Communication $=$ LQCC

example: teleportation (three qubits $d_{1}=1_{2}=d_{3}=2$)

- two distant labs (in the sense that QC is expensive)
- three subsystems with $\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right) \otimes \mathcal{H}_{3}$, with the state vector $|\psi\rangle=|\chi\rangle \otimes\left|\mathrm{B}_{0}\right\rangle \equiv \frac{1}{2} \sum_{i}\left|\mathrm{~B}_{i}\right\rangle \otimes \sigma_{i}|\chi\rangle$
- projective measurement in 12 subsys. $\left\{P_{i}=\left|\mathrm{B}_{i}\right\rangle\left\langle\mathrm{B}_{i}\right|\right\}$
- if measurement output is i then $\left|\psi_{(i)}^{\prime}\right\rangle=\left|\mathrm{B}_{i}\right\rangle \otimes \sigma_{i}|\chi\rangle$, with $q_{(i)}=1 / 4$
- output should be communicated to subsystem 3 (2 bits)
- then in subsystem 3 , transformation $\sigma_{i}^{-1}=\sigma_{i}$ results in $\left|\mathrm{B}_{i}\right\rangle \otimes|\chi\rangle$
- the shared Bell state is used up (a resource)

Local Quantum op. + Classical Communication $=$ LQCC

example: the simplest distillation protocoll (two qubits $d_{1}=1_{2}=2$)

- shared systems of state vectors in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$

$$
|\psi\rangle=\sqrt{\eta_{0}}|00\rangle+\sqrt{\eta_{1}}|11\rangle, \text { with } \eta_{0} \geq \eta_{1}>0, \eta_{0}+\eta_{1}=1
$$

- we want to have $\left|\mathrm{B}_{0}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
- first subsystem: measure with operators $\left\{M_{0}, M_{1}\right\}$

$$
M_{0}=\left[\begin{array}{cc}
\sqrt{\eta_{1} / \eta_{0}} & 0 \\
0 & 1
\end{array}\right], \quad M_{1}=\left[\begin{array}{cc}
\sqrt{1-\eta_{1} / \eta_{0}} & 0 \\
0 & 0
\end{array}\right]
$$

- if measurement output is 0 then $\left|\psi_{(0)}^{\prime}\right\rangle=\left|\mathrm{B}_{0}\right\rangle$ (success) if measurement output is 1 then $\left|\psi_{(1)}^{\prime}\right\rangle=|00\rangle$ (failure)
- output should be communicated to the second subsystem (1 bit)
- this is actually a stochastic LQ+CC (SLQCC): probability of success $q_{(0)}=1-\left(\eta_{0}-\eta_{1}\right)$, fail $q_{(1)}=\eta_{0}-\eta_{1}$
(2) Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions

Bipartite systems

- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Recall - Correlations of observables vs. of states

usual statistical quantities

- covariance of two probabilistic variables:

$$
\operatorname{COV}(X, Y)=\langle(X-\langle X\rangle)(Y-\langle Y\rangle)\rangle=\langle X Y\rangle-\langle X\rangle\langle Y\rangle
$$

- correlation is a normalized version of this:

$$
-1 \leq \operatorname{CoRR}(X, Y)=\operatorname{Cov}(X, Y) / \sqrt{\operatorname{CoV}(X, X) \operatorname{COV}(Y, Y)} \leq 1
$$

more essential: correlations of states

- classical: $\operatorname{COV}(X, Y)=\sum_{i j}\left(p_{12 ; i j}-p_{1 ; i} p_{2 ; j}\right) x_{i} y_{j}$ correlation of the events (meas. outcomes) $C_{i j}=p_{12 ; i j}-p_{1 ; i} p_{2 ; j}$ correlation "in the state itself:" $\mathbf{C}:=\mathbf{p}_{12}-\mathbf{p}_{1} \otimes \mathbf{p}_{2}$ then $\operatorname{COV}(X, Y)=\mathbf{C}^{\mathrm{T}} \mathbf{x} \otimes \mathbf{y}$
- quantum: correlation of the state itself: $\Gamma:=\varrho_{12}-\varrho_{1} \otimes \varrho_{2}$ then $\operatorname{COV}(X, Y)=\operatorname{Tr} \Gamma^{\mathrm{T}} X \otimes Y$
- in q.m. there are many (nontrivially) different observables in a system
- C and 「 remain meaningful even if there are no values, only events

Correlations - Classical case

classical case: uncorrelated / correlated

- correlation in the states is characterized by $\mathbf{C}:=\mathbf{p}_{12}-\mathbf{p}_{1} \otimes \mathbf{p}_{2}$
- events i and j are uncorrelated iff $C_{i j}=0$, that is, $p_{12 ; i j}=p_{1 ; i} p_{2 ; j}$
- state is uncorrelated ($\mathbf{p}_{12} \in \Delta_{\text {uncorr }}$) iff $\mathbf{C}=\mathbf{0}$, that is, $\mathbf{p}_{12}=\mathbf{p}_{1} \otimes \mathbf{p}_{2}$ (iff $\langle X Y\rangle=\langle X\rangle\langle Y\rangle$ for all observables)
- else it is correlated $\left(\mathbf{p}_{12} \in \Delta_{12} \backslash \Delta_{\text {uncorr }}\right)$

uncorrelated states

- pure states are $\boldsymbol{\delta}_{12 ; i j}=\boldsymbol{\delta}_{1 ; i} \otimes \boldsymbol{\delta}_{2 ; j}$, automatically uncorrelated
- all states are mixtures of pure (then uncorrelated) states (uniquely), uncorrelated states are mixtures by product mixing weights
(a bit tautologic, but helps the quantum analogy)
selective measurement
- selective measurement on a subsystem disturbes the state of the other iff the state is correlated

Correlations - Classical case

classical case: uncorrelated / correlated

- correlation in the states is characterized by $\mathbf{C}:=\mathbf{p}_{12}-\mathbf{p}_{1} \otimes \mathbf{p}_{2}$
- events i and j are uncorrelated iff $C_{i j}=0$, that is, $p_{12 ; i j}=p_{1 ; i} p_{2 ; j}$
- state is uncorrelated ($\mathbf{p}_{12} \in \Delta_{\text {uncorr }}$) iff $\mathbf{C}=\mathbf{0}$, that is, $\mathbf{p}_{12}=\mathbf{p}_{1} \otimes \mathbf{p}_{2}$ (iff $\langle X Y\rangle=\langle X\rangle\langle Y\rangle$ for all observables)
- else it is correlated $\left(\mathbf{p}_{12} \in \Delta_{12} \backslash \Delta_{\text {uncorr }}\right)$

Szilárd Szalay (SZFI)
example: two bits $\left(d_{1}=d_{2}=2\right)$

- pure states: $\boldsymbol{\delta}_{12 ; 00}=(1,0) \otimes(1,0), \ldots$
- mixed states:

$$
\mathbf{p}_{12}=\left(p_{12 ; 00}, p_{12 ; 01}, p_{12 ; 10}, p_{12 ; 11}\right)
$$

- uncorrelated states: $p_{12 ; i j}=p_{1 ; i} p_{2 ; j}$ iff

$$
p_{12 ; 00} p_{12 ; 11}=p_{12 ; 01} p_{12 ; 10}
$$

Correlations - Quantum case I.: correlation

quantum case I: uncorrelated / correlated

- correlation in the states is characterized by $\Gamma:=\varrho_{12}-\varrho_{1} \otimes \varrho_{2}$
- state is uncorrelated $\left(\varrho_{12} \in \mathcal{D}_{\text {uncorr }}\right)$ iff $\Gamma=0$, that is, $\varrho_{12}=\varrho_{1} \otimes \varrho_{2}$ (iff $\langle X Y\rangle=\langle X\rangle\langle Y\rangle$ for all observables)
- then we say that the two subsystems are uncorrelated
- else it is correlated ($\left.\varrho_{12} \in \mathcal{D}_{12} \backslash \mathcal{D}_{\text {uncorr }}\right)$

pure states

- pure states are not uncorrelated automatically! $\pi_{12} \neq \pi_{1} \otimes \pi_{2}$, if a pure state is correlated, then the correlation is of quantum origin
- all states are mixtures of pure states (not uniquely), uncorrelated states are mixtures of pure uncorr. states by product mixing weights
selective measurement
- selective measurement on a subsystem disturbes the state of the other iff the state is correlated

Correlations - Quantum case I.: correlation

quantum case I: uncorrelated / correlated

- correlation in the states is characterized by $\Gamma:=\varrho_{12}-\varrho_{1} \otimes \varrho_{2}$
- state is uncorrelated ($\varrho_{12} \in \mathcal{D}_{\text {uncorr }}$) iff $\Gamma=0$, that is, $\varrho_{12}=\varrho_{1} \otimes \varrho_{2}$ (iff $\langle X Y\rangle=\langle X\rangle\langle Y\rangle$ for all observables)
- then we say that the two subsystems are uncorrelated
- else it is correlated ($\left.\varrho_{12} \in \mathcal{D}_{12} \backslash \mathcal{D}_{\text {uncorr }}\right)$

Correlations - Quantum case I.: correlation

quantum case I: uncorrelated / correlated

- correlation in the states is characterized by $\Gamma:=\varrho_{12}-\varrho_{1} \otimes \varrho_{2}$
- state is uncorrelated $\left(\varrho_{12} \in \mathcal{D}_{\text {uncorr }}\right)$ iff $\Gamma=0$, that is, $\varrho_{12}=\varrho_{1} \otimes \varrho_{2}$ (iff $\langle X Y\rangle=\langle X\rangle\langle Y\rangle$ for all observables)
- then we say that the two subsystems are uncorrelated
- else it is correlated ($\left.\varrho_{12} \in \mathcal{D}_{12} \backslash \mathcal{D}_{\text {uncorr }}\right)$

Correlations - Quantum case: pure states (a detour)

by Schmidt decomposition of state vectors

- (I) pure states are not uncorrelated automatically! $\pi_{12} \neq \pi_{1} \otimes \pi_{2}$, if a pure state is correlated, then the correlation is of quantum origin
- pure state: $\pi_{12}=\left|\psi_{12}\right\rangle\left\langle\psi_{12}\right|$, marginals: $\pi_{1}=\operatorname{Tr}_{2} \pi_{12}, \pi_{2}=\operatorname{Tr}_{1} \pi_{12}$
- Schmidt-canonical form: $\left|\psi_{12}\right\rangle=\sqrt{\eta_{1}}|11\rangle+\sqrt{\eta_{2}}|22\rangle+\cdots+\sqrt{\eta_{d}}|d d\rangle$
- (II) marginals are not necessary pure since Spect $\pi_{1}=$ Spect $\pi_{2}=\boldsymbol{\eta}$ "the best possible knowledge of the whole does not involve the best possible knowledge of its parts" (Schrödinger)
- uncorrelated states: $\pi_{12}=\pi_{1} \otimes \pi_{2}$ iff $\left|\psi_{12}\right\rangle=\left|\psi_{1}\right\rangle \otimes\left|\psi_{2}\right\rangle$
- or, π_{12} uncorrelated iff π_{1} and π_{2} are pure ($\boldsymbol{\eta}$ pure),

Correlations - Quantum case: pure states (a detour)

example: two qubit pure sts. $\left(d_{1}=d_{2}=2\right)$

- two qubit state vectors $\left|\psi_{12}\right\rangle=$ $\psi_{12}^{00}|00\rangle+\psi_{12}^{01}|01\rangle+\psi_{12}^{10}|10\rangle+\psi_{12}^{11}|11\rangle$ spec: $\psi_{12}^{i j} \geq 0$
- uncorrelated states: $\psi_{12}^{i j}=\psi_{1}^{i} \psi_{2}^{j}$ iff $\psi_{12}^{00} \psi_{12}^{11}=\psi_{12}^{01} \psi_{12}^{10}$
- spec.spec.: Schmidt form:

$$
\left|\psi_{12}\right\rangle=\sqrt{\eta_{0}}|00\rangle+\sqrt{\eta_{1}}|11\rangle
$$

Correlations - Quantum case II.: discord

quantum case II: non-discordant ("classical") / discordant ("non-classical")

- local inclusion of classical states into quantum ones: fixing local bases $\left\{\left|\varphi_{1 ; i}\right\rangle\right\},\left\{\left|\varphi_{2 ; i}\right\rangle\right\}$, for pure states $\delta_{1 ; i} \mapsto\left|\varphi_{1 ; i}\right\rangle\left\langle\varphi_{1 ; i}\right|$
- state is non-discordant ($\varrho_{12} \in \mathcal{D}_{\text {nondsc }}$) if it's an image of a class. one: $\varrho_{12}=\sum_{i j} p_{i j} \pi_{1 ; i} \otimes \pi_{2 ; j}$ with $\left\{\pi_{1 ; i}\right\},\left\{\pi_{2 ; i}\right\}$ orthogonal
- else it is discordant $\left(\varrho_{12} \in \mathcal{D}_{12} \backslash \mathcal{D}_{\text {nondsc }}\right)$
- if uncorr. then nondisc. $\mathcal{D}_{\text {uncorr }} \subset \mathcal{D}_{\text {nondsc }}$, pure st. $\mathcal{P}_{\text {uncorr }}=\mathcal{P}_{\text {nondsc }}$
selective measurement
- selective measurement on a subsystem can disturb the state of the other iff the state is correlated
- for nondiscordant states: one can find local selective measurement which doesn't disturb the system
- can be diagonalized by local unitaries, $U_{1} \otimes U_{2} \varrho_{12} U_{1}^{\dagger} \otimes U_{2}^{\dagger}$ diagonal

Correlations - Quantum case II.: discord

quantum case II: non-discordant ("classical") / discordant ("non-classical")

- local inclusion of classical states into quantum ones: fixing local bases $\left\{\left|\varphi_{1 ; i}\right\rangle\right\},\left\{\left|\varphi_{2 ; i}\right\rangle\right\}$, for pure states $\delta_{1 ; i} \mapsto\left|\varphi_{1 ; i}\right\rangle\left\langle\varphi_{1 ; i}\right|$
- state is non-discordant ($\varrho_{12} \in \mathcal{D}_{\text {nondsc }}$) if it's an image of a class. one: $\varrho_{12}=\sum_{i j} p_{i j} \pi_{1 ; i} \otimes \pi_{2 ; j}$ with $\left\{\pi_{1 ; i}\right\},\left\{\pi_{2 ; i}\right\}$ orthogonal
- else it is discordant $\left(\varrho_{12} \in \mathcal{D}_{12} \backslash \mathcal{D}_{\text {nondsc }}\right)$
- if uncorr. then nondisc. $\mathcal{D}_{\text {uncorr }} \subset \mathcal{D}_{\text {nondsc }}$, pure st. $\mathcal{P}_{\text {uncorr }}=\mathcal{P}_{\text {nondsc }}$
$|c| c c c$

Correlations - Quantum case III.: entanglement

quantum case III: separable / entangled

- in the classical case: all states are mixtures of uncorrelated states
- state is separable: $\varrho_{12} \in \mathcal{D}_{\text {sep }}$ if it is the mixture of uncorrelated states (Werner): $\varrho_{12}=\sum_{k} p_{k} \varrho_{1 ; k} \otimes \varrho_{2 ; k}$
- else it is entangled ($\varrho_{12} \in \mathcal{D}_{12} \backslash \mathcal{D}_{\text {sep }}$) (decision of this is difficult)
- not entirely nondiscordant, $\mathcal{D}_{\text {nondsc }} \subset \mathcal{D}_{\text {sep }}$, pure states $\mathcal{P}_{\text {nondsc }}=\mathcal{P}_{\text {sep }}$

convexity

- states: $\mathcal{D}=$ Conv \mathcal{P} convex hull of pure states
- separable states: $\mathcal{D}_{\text {sep }}=$ Conv $\mathcal{D}_{\text {uncorr }}$ convex hull of uncorr. states
- extremal points: pure states (there are separable and entangled ones) separable states can also be written as $\varrho_{12}=\sum_{l} q_{I} \pi_{l, 1} \otimes \pi_{l, 2}$
- separable states: $\mathcal{D}_{\text {sep }}=\operatorname{Conv} \mathcal{P}_{\text {sep }}$, convex hull of sep. pure states

Correlations - Quantum case III.: entanglement

quantum case III: separable / entangled

- in the classical case: all states are mixtures of uncorrelated states
- state is separable: $\varrho_{12} \in \mathcal{D}_{\text {sep }}$ if it is the mixture of uncorrelated states (Werner): $\varrho_{12}=\sum_{k} p_{k} \varrho_{1 ; k} \otimes \varrho_{2 ; k}$
- else it is entangled ($\varrho_{12} \in \mathcal{D}_{12} \backslash \mathcal{D}_{\text {sep }}$) (decision of this is difficult)
- not entirely nondiscordant, $\mathcal{D}_{\text {nondsc }} \subset \mathcal{D}_{\text {sep }}$, pure states $\mathcal{P}_{\text {nondsc }}=\mathcal{P}_{\text {sep }}$

example: Bell-diag. states $\left(d_{1}=d_{2}=2\right)$
- a special section of the whole \mathcal{D}_{12}, pure states: $\left|\mathrm{B}_{i}\right\rangle\left\langle\mathrm{B}_{i}\right|$
- uncorrelated states: white noise only
- nondisc.: $\varrho_{12}=\frac{1}{4}\left(\mathbf{I} \otimes \mathbf{I}+t_{\mu} \sigma_{\mu} \otimes \sigma_{\mu}\right)$
- separable states: octahedron (PPT!)

Quantum correlations - Overview

definitions

- uncorr. $\varrho_{12}=\varrho_{1} \otimes \varrho_{2}=\sum_{i j} p_{i} p_{j} \pi_{1 ; i} \otimes \pi_{2 ; j}, \quad\left\{\pi_{a ; i}\right\}$ orthogonal
- nondisc. $\varrho_{12}=\sum_{i j} p_{i j} \pi_{1 ; i} \otimes \pi_{2 ; j}$, $\left\{\pi_{a ; i}\right\}$ orthogonal
- sep. $\quad \varrho_{12}=\sum_{k} p_{k} \varrho_{1 ; k} \otimes \varrho_{2 ; k}=\sum_{l} q_{I} \pi_{1 ; I} \otimes \pi_{2 ; l}, \quad\left\{\pi_{a ; i}\right\}$ general

nested structure

- in general, $\mathcal{D}_{\text {uncorr }} \subset \mathcal{D}_{\text {nondsc }} \subset \mathcal{D}_{\text {sep }}$:

uncorrelated	\Longrightarrow nondiscordant ("classical")	\Longrightarrow	separable
correlated	\Longleftarrow discordant ("nonclassical")	\Longleftarrow	entangled

- specially, for pure states, $\mathcal{P}_{\text {uncorr }}=\mathcal{P}_{\text {nondsc }}=\mathcal{P}_{\text {sep }}$: uncorrelated \Longleftrightarrow nondiscordant ("classical") \Longleftrightarrow separable correlated \Longleftrightarrow discordant ("nonclassical") \Longleftrightarrow entangled

Quantum correlations - Overview

definitions

- uncorr. $\varrho_{12}=\varrho_{1} \otimes \varrho_{2}=\sum_{i j} p_{i} p_{j} \pi_{1 ; i} \otimes \pi_{2 ; j}, \quad\left\{\pi_{a ; i}\right\}$ orthogonal
- nondisc. $\varrho_{12}=\sum_{i j} p_{i j} \pi_{1 ; i} \otimes \pi_{2 ; j}$, $\left\{\pi_{a ; i}\right\}$ orthogonal
- sep. $\quad \varrho_{12}=\sum_{k} p_{k} \varrho_{1 ; k} \otimes \varrho_{2 ; k}=\sum_{l} q_{I} \pi_{1 ; I} \otimes \pi_{2 ; l}, \quad\left\{\pi_{a ; i}\right\}$ general

geometry

- in general, $\mathcal{D}_{\text {uncorr }} \subset \mathcal{D}_{\text {nondsc }} \subset \mathcal{D}_{\text {sep }} \subset \mathcal{D}_{12}$
- $\mathcal{D}_{\text {sep }}=\operatorname{Conv} \mathcal{P}_{\text {sep }}$ convex set, of nonzero measure in $\mathcal{D}_{12}=\operatorname{Conv} \mathcal{P}_{12}$
$\mathcal{D}_{\text {nondsc }}$ is of zero measure in $\mathcal{D}_{\text {sep }}$,
$\mathcal{D}_{\text {uncorr }}$ is of zero measure in $\mathcal{D}_{\text {nondsc }}$.
- specially, for pure states, $\mathcal{P}_{\text {uncorr }}=\mathcal{P}_{\text {nondsc }}=\mathcal{P}_{\text {sep }} \subset \mathcal{P}_{12}$
- $\mathcal{D}_{\text {sep }}$ is of zero measure in \mathcal{D}_{12},
$\mathcal{D}_{\text {nondsc }}$ is of zero measure in $\mathcal{D}_{\text {sep }}$,
$\mathcal{D}_{\text {uncorr }}$ is of zero measure in $\mathcal{D}_{\text {nondsc }}$.

Quantum correlations - w.r.t. quantum maps

definitions

- uncorr. $\varrho_{12}=\varrho_{1} \otimes \varrho_{2}=\sum_{i j} p_{i} p_{j} \pi_{1 ; i} \otimes \pi_{2 ; j}, \quad\left\{\pi_{a ; i}\right\}$ orthogonal
- nondisc. $\varrho_{12}=\sum_{i j} p_{i j} \pi_{1 ; i} \otimes \pi_{2 ; j}$,
- sep. $\quad \varrho_{12}=\sum_{k} p_{k} \varrho_{1 ; k} \otimes \varrho_{2 ; k}=\sum_{l} q_{I} \pi_{1 ; /} \otimes \pi_{2 ; l}, \quad\left\{\pi_{a ; i}\right\}$ general

creation

- all uncorrelated states can be created by LC from pure product state (assuming that LC is w.r.t. the local pure states)
- all nondisc. states can be created by LC+CC from pure product state (or from uncorrelated state) (assuming that LC is w.r.t. the local pure states)
- all separable states can be created by LQ+CC from pure product state (ultimate definition, in accordance with the distant lab paradigm)
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions
- Bipartite systems
- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Correlation measures - Classical case

 classical case: correlation (measure)- correlation in the states is characterized by $\mathbf{C}=\mathbf{p}_{12}-\mathbf{p}_{1} \otimes \mathbf{p}_{2}$
- let the measure of corr. be the distinguishability of \mathbf{p}_{12} and $\mathbf{p}_{1} \otimes \mathbf{p}_{2}$:

$$
D\left(\mathbf{p}_{12} \| \mathbf{p}_{1} \otimes \mathbf{p}_{2}\right)=S\left(\mathbf{p}_{1}\right)+S\left(\mathbf{p}_{2}\right)-S\left(\mathbf{p}_{12}\right)=I\left(\mathbf{p}_{12}\right)
$$

this turns out to be the mutual information $I\left(\mathbf{p}_{12}\right)$

mutual information

- vanishes exactly for uncorrelated states
- another (original?) definition: $J\left(\mathbf{p}_{12}\right):=S\left(\mathbf{p}_{2}\right)-S_{2 \mid 1}\left(\mathbf{p}_{12}\right) \equiv I\left(\mathbf{p}_{12}\right)$ with the conditional entropy $S_{2 \mid 1}\left(\mathbf{p}_{12}\right)=\sum_{i} p_{i} S\left(\mathbf{p}_{2 \mid i}\right)$ with the entropy of the conditional state $\mathbf{p}_{2 \mid i}$
- meaning: information gain about the subsystem measuring the other (this is symmetric in the classical case)

Correlation measures - Classical case

classical case: correlation (measure)

- correlation in the states is characterized by $\mathbf{C}=\mathbf{p}_{12}-\mathbf{p}_{1} \otimes \mathbf{p}_{2}$
- let the measure of corr. be the distinguishability of \mathbf{p}_{12} and $\mathbf{p}_{1} \otimes \mathbf{p}_{2}$:

$$
D\left(\mathbf{p}_{12} \| \mathbf{p}_{1} \otimes \mathbf{p}_{2}\right)=S\left(\mathbf{p}_{1}\right)+S\left(\mathbf{p}_{2}\right)-S\left(\mathbf{p}_{12}\right)=I\left(\mathbf{p}_{12}\right)
$$

this turns out to be the mutual information $I\left(\mathbf{p}_{12}\right)$
a geometric point of view

- it can be proven that: $\operatorname{argmin}_{\mathbf{q} \in \Delta_{\text {uncorr }}} D\left(\mathbf{p}_{12} \| \mathbf{q}\right)=\mathbf{p}_{1} \otimes \mathbf{p}_{2}$, so $\mathbf{p}_{1} \otimes \mathbf{p}_{2}$ is the least distinguishable ("closest") uncorrelated state
- $I\left(\mathbf{p}_{12}\right)$ can be interpreted as the distinguishability from the least distinguishable uncorrelated state:
$\min _{\mathbf{q} \in \Delta_{\text {uncorr }}} D\left(\mathbf{p}_{12} \| \mathbf{q}\right)=D\left(\mathbf{p}_{12} \| \mathbf{p}_{1} \otimes \mathbf{p}_{2}\right)=I\left(\mathbf{p}_{12}\right)$
- there are other measures of distance in Δ_{12} leading to other measures of correlations, e.g.: $D_{\alpha}\left(\mathbf{p}_{12}, \mathbf{p}_{1} \otimes \mathbf{p}_{2}\right)=\left\|\mathbf{p}_{12}-\mathbf{p}_{1} \otimes \mathbf{p}_{2}\right\|_{\alpha}=\|\mathbf{C}\|_{\alpha}$

Correlation measures - Quantum case I.: correlation

quantum case I: correlation (measure)

- correlation in the states is characterized by $\Gamma=\varrho_{12}-\varrho_{1} \otimes \varrho_{2}$
- let the measure of corr. be the distinguishability of ϱ_{12} and $\varrho_{1} \otimes \varrho_{2}$

$$
D\left(\varrho_{12} \| \varrho_{1} \otimes \varrho_{2}\right)=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S\left(\varrho_{12}\right)=: I\left(\varrho_{12}\right)
$$

$I\left(\mathbf{p}_{12}\right)$ being the quantum mutual information
quantum mutual information

- vanishes exactly for uncorrelated states
- for pure states, $D\left(\pi_{12} \| \pi_{1} \otimes \pi_{2}\right)=2 S\left(\pi_{1}\right)=2 S\left(\pi_{2}\right)$

Correlation measures - Quantum case I.: correlation

quantum case I: correlation (measure)

- correlation in the states is characterized by $\Gamma=\varrho_{12}-\varrho_{1} \otimes \varrho_{2}$
- let the measure of corr. be the distinguishability of ϱ_{12} and $\varrho_{1} \otimes \varrho_{2}$

$$
D\left(\varrho_{12} \| \varrho_{1} \otimes \varrho_{2}\right)=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S\left(\varrho_{12}\right)=: I\left(\varrho_{12}\right)
$$

$I\left(\mathbf{p}_{12}\right)$ being the quantum mutual information
a geometric point of view

- again, it can be proven that $\operatorname{argmin}_{\omega \in \mathcal{D}_{\text {uncorr }}} D\left(\varrho_{12}| | \omega\right)=\varrho_{1} \otimes \varrho_{2}$, so $\varrho_{1} \otimes \varrho_{2}$ is the least distinguishable ("closest") uncorrelated state
- $I\left(\varrho_{12}\right)$ can be interpreted as the distinguishability from the least distinguishable uncorrelated state, $\min _{\omega \in \mathcal{D}_{\text {uncorr }}} D\left(\varrho_{12} \| \omega\right)=D\left(\varrho_{12} \| \varrho_{1} \otimes \varrho_{2}\right)=I\left(\varrho_{12}\right)$
- there are other measures of distance in \mathcal{D} leading to other measures of correlations, e.g.: $D_{\alpha}\left(\varrho_{12}, \varrho_{1} \otimes \varrho_{2}\right)=\left\|\varrho_{12}-\varrho_{1} \otimes \varrho_{2}\right\|_{\alpha}=\|\Gamma\|_{\alpha}$

Correlation measures - Quantum case II.: discord

quantum case II: discord (measure)

- quantum mutual information $I\left(\varrho_{12}\right):=S\left(\varrho_{1}\right)+S\left(\varrho_{2}\right)-S\left(\varrho_{12}\right)$
- what about the other definition, based on conditional state? conditional sate in general is ill-defined in quantum mechanics, however, it can be defined w.r.t. a POVM by $\mathcal{M}=\left\{\mathcal{M}_{i}\right\}$,
- J w.r.t. a POVM: $J_{2 \mid \mathcal{M}}\left(\varrho_{12}\right)=S(2)-S_{2 \mid \mathcal{M}}\left(\varrho_{12}\right)$ with the cond. entropy (w.r.t. $\mathcal{M}): S_{2 \mid \mathcal{M}}\left(\varrho_{12}\right)=\sum_{i} p_{i} S\left(\varrho_{2 \mid \mathcal{M}_{i}}\right)$ with the cond. state $\left(w . r . t . \mathcal{M}_{i}\right): \varrho_{2 \mid \mathcal{M}_{i}}=\operatorname{Tr}_{1}\left(M_{i} \otimes \mathbf{I}\right) \varrho_{12}\left(M_{i} \otimes \mathbf{I}\right)^{\dagger}$,
- then $J_{2 \mid 1}\left(\varrho_{12}\right):=\max _{\mathcal{M}} J_{2 \mid \mathcal{M}}\left(\varrho_{12}\right) \not \equiv I\left(\varrho_{12}\right)$
- vanishes exactly for nondiscordant ("classical") states, not symmetric
- discord: $D_{2 \mid 1}\left(\varrho_{12}\right)=I\left(\varrho_{12}\right)-J_{2 \mid 1}\left(\varrho_{12}\right), D_{1 \mid 2}\left(\varrho_{12}\right)=I\left(\varrho_{12}\right)-J_{1 \mid 2}\left(\varrho_{12}\right)$
- for pure states, $D_{2 \mid 1}\left(\pi_{12}\right)=D_{1 \mid 2}\left(\pi_{12}\right)=S\left(\pi_{1}\right)=S\left(\pi_{2}\right)$

Correlation measures - Quantum case II.: discord

(information-)geometric measures

- let the relative entropy of discord be the distinguishability from the least distinguishable classical state: $\min _{\omega \in \mathcal{D}_{\text {nondsc }}} D\left(\varrho_{12}| | \omega\right)$
- there are other measures of distance in \mathcal{D} leading to other measures of discord (geometric measure of discord): $\min _{\omega \in \mathcal{D}_{\text {nondsc }}}\left\|\varrho_{12}-\omega_{12}\right\|_{\alpha}$

Correlation measures - Quantum case III.: entanglement

quantum case III: entanglement (measure)

- quantum case: there are pure states with mixed marginals, so, for pure states, let the measure of entanglement be the mixedness of the subsystem (vanishes exactly for separable pure states)
- entanglement entropy: $E\left(\pi_{12}\right)=S\left(\pi_{1}\right)=S\left(\pi_{2}\right)$
- for mixed states, entanglement of formation:

$$
E_{\mathrm{F}}\left(\varrho_{12}\right)=\min _{\varrho_{12}=\sum_{i} p_{i} \pi_{12 ; i}} \sum_{i} p_{i} E\left(\pi_{12 ; i}\right)
$$

i.e., "average entanglement entropy of the optimal decomposition"

- vanishes exactly for separable states, $E_{F}\left(\pi_{12}\right)=E\left(\pi_{12}\right)$ for pure ones
- there are Rényi/Tsallis generalizations, e.g., the concurrence $C=\sqrt{S_{2}^{T_{s}}}$ instead of S leads to the concurrence of formation C_{F}, for two qubits, this is called Wootters concurrence (explicit min!)

Correlation measures - Quantum case III.: entanglement

(information-)geometric measures

- let the relative entropy of entanglement be the distinguishability from the least distinguishable separable state: $\min _{\omega \in \mathcal{D}_{\text {sep }}} D\left(\varrho_{12}| | \omega\right)$
- there are other measures of distance in \mathcal{D} leading to other measure of ent. (geom. measure of entanglement): $\min _{\omega \in \mathcal{D}_{\text {sep }}}\left\|\varrho_{12}-\omega_{12}\right\|_{\alpha}$

operational measures w.r.t. LQCC protocolls

- distillable entanglement and entanglement cost

$$
\begin{aligned}
& E_{\mathrm{D}}\left(\varrho_{12}\right)=\sup \left\{r \mid \lim _{m \rightarrow \infty}\left(\inf _{\mathcal{L} \mathrm{LQCC}}\left\|\mathcal{L}\left(\varrho_{12}^{\otimes m}\right)-\left(\left|\mathrm{B}_{0}\right\rangle\left\langle\mathrm{B}_{0}\right|\right)^{\otimes m r}\right\|_{1}\right)=0\right\} \\
& E_{\mathrm{C}}\left(\varrho_{12}\right)=\inf \left\{r \mid \lim _{m \rightarrow \infty}\left(\inf _{\mathcal{L} \mathrm{LQCC}}\left\|\mathcal{L}\left(\left(\left|\mathrm{~B}_{0}\right\rangle\left\langle\mathrm{B}_{0}\right|\right)^{\otimes m r}\right)-\varrho_{12}^{\otimes m}\right\|_{1}\right)=0\right\}
\end{aligned}
$$

- for pure states $E_{\mathrm{D}}\left(\pi_{12}\right)=E_{\mathrm{C}}\left(\pi_{12}\right)=E_{\mathrm{F}}\left(\pi_{12}\right)=E\left(\pi_{12}\right)=S\left(\pi_{1}\right)$
- there are undistillable states (bound entangled) $\mathcal{D}_{\text {sep }} \subset \mathcal{D}_{\text {bound }} \subset \mathcal{D}_{12}$

Measures of quantum correlations

$$
\text { examples: Werner states }\left(d_{1}=d_{2}=2\right)
$$

- $\varrho_{12}=w\left|\mathrm{~B}_{2}\right\rangle\left\langle\mathrm{B}_{2}\right|+(1-w) \frac{1}{4} \mathbf{I} \otimes \mathbf{I}$ for $-1 / 3 \leq w \leq 1$
- uncorrelated, classical: $w=0$, separable $w \leq 1 / 3$, LHVM for CHSH: $w \leq 1 / \sqrt{2}$

Measures of quantum correlations

$$
\begin{aligned}
& \text { examples: Werner states }\left(d_{1}=d_{2}=2\right) \\
& \varrho_{12}=w\left|\mathrm{~B}_{2}\right\rangle\left\langle\mathrm{B}_{2}\right|+(1-w) \frac{1}{4} \mathbf{I} \otimes \mathbf{I} \\
& \text { for }-1 / 3 \leq w \leq 1 \\
& \text { uncorrelated, classical: } w=0, \\
& \text { separable } w \leq 1 / 3, \\
& \text { LHVM for } \mathrm{CHSH}: w \leq 1 / \sqrt{2} \\
& \text { correlation (blue): } \\
& I\left(\varrho_{12}\right)=2 \ln 2-S\left(\varrho_{12}\right) \\
& \text { geom. discord (green): } \\
& \text { min } \omega_{12} \in \mathcal{D}_{\text {nondsc }}\left\|\varrho_{12}-\omega_{12}\right\|^{2}=w^{2} / 2 \\
& \text { Wootters concurrence }(\text { dashed red }) \text { : } C_{F}\left(\varrho_{12}\right)=(3 w-1) / 2,(1 / 3 \leq w) \\
& \text { entanglement of formation }(\text { red }) \text { : } \\
& E_{F}\left(\varrho_{12}\right) \text { through } C_{F}\left(\varrho_{12}\right)
\end{aligned}
$$

- Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions

Bipartite systems

- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Measures of quantum correlations - w.r.t. quantum maps

creation

- all uncorrelated states can be created by LC from pure product state (assuming that LC is w.r.t. the local pure states)
- all nondisc. states can be created by LC+CC from pure product state (or from uncorrelated state) (assuming that LC is w.r.t. the local pure states)
- all separable states can be created by LQ+CC from pure product state monotonity
- correlation: quantity/notion which doesn't increase under LC (it can increase if CC is allowed) (works for classical states)
- discord: quantity/notion which doesn't increase under LC+CC (but it can increase if LQ is allowed) doesn't make sense!
- entanglement: quantity/notion which doesn't incr. under LQ+CC (it can increase only if QC is allowed) (distant lab paradigm)
(2) Single systems
- States
- Maps of states
- Mixedness of states
- Distinguishability of states
- Compatibility of notions

Bipartite systems

- States
- Maps of states
- Correlations of states
- Measures of correlations of states
- Compatibility of notions
- Criteria of correlations

References

Criteria of correlations - Overview

in general

- task: decide whether a state shows correlation/discord/entanglement (we are usually not able to evaluate a discord/entanglement measure)
- deciding whether a classical state $\mathbf{p}_{12} \in \Delta_{12}$ is uncorrelated is easy:

$$
\mathbf{p}_{12} \in \Delta_{\text {uncorr }} \quad \Longleftrightarrow \quad \mathbf{p}_{12}=\left(\operatorname{Sum}_{2} \mathbf{p}_{12}\right) \otimes\left(\operatorname{Sum}_{1} \mathbf{p}_{12}\right)
$$

- deciding whether a quantum state $\varrho_{12} \in \mathcal{D}_{12}$ is uncorrelated is easy:

$$
\varrho_{12} \in \mathcal{D}_{\text {uncorr }} \quad \Longleftrightarrow \quad \varrho_{12}=\left(\operatorname{Tr}_{2} \varrho_{12}\right) \otimes\left(\operatorname{Tr}_{1} \varrho_{12}\right)
$$

- deciding whether a quantum state $\varrho_{12} \in \mathcal{D}_{12}$ is nondiscordant is not so simple, but there exists a necessary and sufficient criterion

$$
\varrho_{12} \in \mathcal{D}_{\text {nondsc }} \quad \Longleftrightarrow \quad \text { a condition fulfilled }
$$

- deciding whether a quantum state $\varrho_{12} \in \mathcal{D}_{12}$ is separable is a hard optimization task, however, there are several necessary but not sufficient criteria, easy to check (and also interesting)

$$
\varrho_{12} \in \mathcal{D}_{\text {sep }} \quad \Longrightarrow \quad \text { a condition fulfilled }
$$

Criteria of correlations - Quantum case III.: entanglement

criteria by majorization

- separable states:
"the whole system is more disordered than any of its subsystems"

$$
\varrho_{12} \in \mathcal{D}_{\text {sep }} \quad \Longrightarrow \quad \varrho_{12} \preceq \varrho_{1} \quad \text { and } \quad \varrho_{12} \preceq \varrho_{2}
$$

criteria by entropies

- entropic reformulation of the above:

$$
\varrho_{12} \in \mathcal{D}_{\text {sep }} \quad \Longrightarrow \quad S\left(\varrho_{12}\right) \geq S\left(\varrho_{1}\right) \quad \text { and } \quad S\left(\varrho_{12}\right) \geq S\left(\varrho_{2}\right)
$$

e.g.: von Neumann entropy (Rényi, Tsallis are also suitable)

- specially for $\pi_{12}=|\psi\rangle\langle\psi| \in \mathcal{P}$ pure state: $S\left(\pi_{12}\right)=0$

$$
\pi_{12} \in \mathcal{P}_{\text {sep }} \quad \Longleftrightarrow \quad S\left(\pi_{1}\right)=0 \quad \text { and } \quad S\left(\pi_{2}\right)=0
$$

(as we have already seen)

Criteria of correlations - Quantum case III.: entanglement

criteria by CHSH (Bell) inequalities

- obesrvable of spin-correlation experiment

$$
B_{\mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}}=\mathbf{a} \boldsymbol{\sigma} \otimes \mathbf{b} \boldsymbol{\sigma}+\mathbf{a} \boldsymbol{\sigma} \otimes \mathbf{b}^{\prime} \boldsymbol{\sigma}+\mathbf{a}^{\prime} \boldsymbol{\sigma} \otimes \mathbf{b} \boldsymbol{\sigma}-\mathbf{a}^{\prime} \boldsymbol{\sigma} \otimes \mathbf{b}^{\prime} \boldsymbol{\sigma}
$$

- CHSH inequality: (Clauser-Horne-Shimony-Holt)

$$
\left|\operatorname{Tr}\left(\varrho_{12} B_{\mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}}\right)\right| \leq 2 \quad \text { for all settings }
$$

(Local Hidden Variable Model)

- for pure states:

$$
\varrho_{12} \in \mathcal{P}_{\text {sep }} \quad \Longleftrightarrow \quad\left|\operatorname{Tr}\left(\varrho_{12} B_{\mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}}\right)\right| \leq 2 \quad \text { for all settings }
$$

- usually not enough for mixed states:

$$
\varrho_{12} \in \mathcal{D}_{\text {sep }} \quad \Longrightarrow \quad\left|\operatorname{Tr}\left(\varrho_{12} B_{\mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}}\right)\right| \leq 2 \quad \text { for all settings }
$$

there are entangled states admitting LHVM for CHSH (Werner)

Criteria of correlations - Quantum case III.: entanglement

criteria by witnesses

- "entanglement witness":
$W \in \operatorname{Lin} \mathcal{H}$ observable,
$\forall \omega_{12} \in \mathcal{D}$ sep $: \operatorname{Tr} W \omega_{12} \geq 0$ and
$\exists \varrho_{12} \in \mathcal{D} \backslash \mathcal{D}_{\text {sep }}: \operatorname{Tr} W \varrho_{12}<0$
- witnesses can be found for all entangled states
- "clipping around the convex set $\mathcal{D}_{\text {sep }}$ "
- $W_{\mathrm{CHSH}}=2 \mathbf{I} \otimes \mathbf{I}-B_{\mathbf{a}, \mathbf{a}^{\prime}, \mathbf{b}, \mathbf{b}^{\prime}}$
"CHSH-witness" (not sufficient)
- there are also nonlinear criteria, e.g., nonlinear Bell-inequalities.

$\varrho_{12} \in \mathcal{D}_{\text {sep }}$	\Longleftrightarrow	$\langle W\rangle \equiv \operatorname{Tr} W \varrho_{12} \geq 0$	for all withesses W			
$\varrho_{12} \in \mathcal{D}_{\text {sep }}$						
Szilárd Szalay (SzFI)				$\quad \Longrightarrow \quad$	$\langle W\rangle \equiv \operatorname{Tr} W \varrho_{12} \geq 0$	for some withesses W
:---:	:---:					
Entanglement and correlations						

Criteria of correlations - Quantum case III.: entanglement

criteria by positive maps

- physics: completely positive maps $\mathcal{E}: \operatorname{Lin} \mathcal{H}_{1} \rightarrow \operatorname{Lin} \mathcal{H}_{1}$ preserve the positivity of not only the system $\left(\mathcal{E}\left(\varrho_{1}\right) \geq 0\right)$, but also of the sys. together with its environment $\left((\mathcal{E} \otimes \mathcal{I})\left(\varrho_{12}\right) \geq 0\right)$
- positive but not completely positive maps: $\mathcal{F}: \operatorname{Lin} \mathcal{H}_{1} \rightarrow \operatorname{Lin} \mathcal{H}_{1}$

$$
\begin{array}{llll}
\varrho_{12} \in \mathcal{D}_{\text {sep }} & \Longleftrightarrow & (\mathcal{F} \otimes \mathcal{I})\left(\varrho_{12}\right) \geq 0 & \text { for all pos. maps } \mathcal{F} \\
\varrho_{12} \in \mathcal{D}_{\text {sep }} & \Longrightarrow & (\mathcal{F} \otimes \mathcal{I})\left(\varrho_{12}\right) \geq 0 & \text { for some pos. maps } \mathcal{F}
\end{array}
$$

examples

- positive partial transpose criterion (Peres): $\mathcal{F}(\omega)=\omega^{\mathrm{T}}$
- reduction criterion (Horodecki): $\mathcal{F}(\omega)=(\operatorname{Tr} \omega) \mathbf{I}-\omega$
- many others...

References

- Introductory paper on entanglement, correlations and discord:

Kavan Modi, A Pedagogical Overview of Quantum Discord, Open Syst. Inf. Dyn., 21, 1440006 (2014), (arXiv:1312.7676 [quant-ph])

- Comprehensive reviews on entanglement, correlations and discord:

Ryszard Horodecki, Paweł Horodecki, Michał Horodecki and Karol Horodecki, Quantum entanglement,
Rev. Mod. Phys. 81, 865 (2009), (arXiv:quant-ph/0702225)
Kavan Modi, Aharon Brodutch, Hugo Cable, Tomasz Paterek, and Vlatko Vedral,
The classical-quantum boundary for correlations: Discord and related measures, Rev. Mod. Phys. 84, 1655 (2012), (arXiv:1112.6238 [quant-ph])

- A really pleasurable book on quantum states:

Ingemar Bengtsson and Karol Życzkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement,
Cambridge University Press, 2006

- Some topics on the entanglement of multipartite mixed states (of personal taste)

Szilárd Szalay, Quantum entanglement in finite-dimensional Hilbert spaces, (arXiv:1302.4654 [quant-ph])

References

- Textbooks, lecture notes on quantum (and classical) information theory:

Thomas M. Cover, Joy A. Thomas, Elements of Information Theory, Wiley, 1991,2006

Michael A. Nielsen, Isaac L. Chuang, Quantum Computation and Quantum Information,
Cambridge University Press, 2000, 2010
Mark M. Wilde, Quantum Information Theory (or, From Classical to Quantum Shannon Theory), Cambridge University Press, 2013 (arXiv:1106.1445 [quant-ph])
Michael M. Wolf, Quantum Channels \& Operations: A Guided Tour, unpublished, unfinished, www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf

Takahiro Sagawa, Second Law-Like Inequalities with Quantum Relative Entropy:
An Introduction,
Kinki University Series on Quantum Computing, Volume 8: Lectures on Quantum Computing, Thermodynamics and Statistical Physics (arXiv:1202.0983 [cond-mat.stat-mech])

Statement:

Thank you for your attention!

Corollary:
(: Have a nice coffee break! :)

