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Introduction

Quantum correlations

superposition principle: quantum systems behave nonclassically

one single system: uncertainty relations

composite systems: nonclassical correlations (discord, entanglement)
even pure joint state may have mixed marginals

manybody systems: “physics of strongly correlated systems”

correlation structure of (ground) states manifests itself
also in macroscopic physical properties

area law for correlations

fewbody systems: “quantum information theory”

efficient q. algorithms, q. secure key sharing, q. teleportation

“quantum correlation is a resource”
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Introduction

Our approach

discrete finite systems

classical: configuration spaces of finite points (coin: 2, dice: 6,. . . )

quantum: finite-dimensional Hilbert spaces

geometrical “insight”

the conceptual questions of quantum mechanics
are not buried under hard problems of functional analysis :)

still not a toy model!

quantum correlations as I like it

of fundamental importance, beautiful, interesting and deep problems

classical vs. quantum systems from information theoretical approach

works in the lab too
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Introduction

Recall I. – States of a classical system

we know it certainly / all are the same: pure states

d <∞ mutually exclusive events:
e.g. X prob. var. can take d different values x = (x1, . . . , xd)

d different pure states: 7→ δj = (0, . . . , 1, . . . , 0)
e.g., when X = xj with certainty

expectation value is trivially 〈X 〉 = xj in pure state

we are uncertain / have an ensemble: mixed states

different pure states δj , with pj relative frequencies

expectation value: 〈X 〉 =
∑

j pjxj

probability density (mixed state): p = (p1, . . . , pd) =
∑

j pjδj ∈ ∆

after measuring X to be xi , state collapses: p 7→ δi
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Introduction

Recall II. – States of a quantum system

we know it certainly / all are the same: pure states

quantum system 7→ H Hilbert space, d = dimH <∞
dyamical variables (observables): its values are xi , take {|ξi 〉 ∈ H}
orthonormalized vectors, X =

∑
i xi |ξi 〉〈ξi | ∈ LinH normal operator

there exists noncommuting ones, [X ,Y ] 6= 0

state vectors: |ψ〉 ∈ H, (‖ψ‖ = 1) then |ψ〉 =
∑

i 〈ξi |ψ〉|ξi 〉
probability (!) of ith outcome (Born’s rule): qi = |〈ξi |ψ〉|2

expectation value: 〈X 〉 =
∑

j qjxj = 〈ψ|X |ψ〉 nontrivial

we are uncertain / have an ensemble: mixed states

different |ψj〉 ∈ H state vectors, with pj relative frequencies

expectation value: 〈X 〉 =
∑

j pj〈ψj |X |ψj〉 = Tr(%X )

density operator (mixed state): % =
∑

j pj |ψj〉〈ψj | ∈ D ⊂ LinSAH
after measuring X to be xi , state collapses % 7→ |ξi 〉〈ξi |
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Introduction

Recall III. – Quantum and classical “averages”

doing a measurement

X =
∑

i xi |ξi 〉〈ξi | observable

measurement statistics: qi = |〈ξi |ψ〉|2, or qi = Tr(%|ξi 〉〈ξi |)
state collapses into the pure state |ξi 〉〈ξi |
take a set {|ϕj〉 ∈ H} of orthonormalized state vectors, and. . .

. . . in H: linear combination
(superposition)

take cj ∈ C, ‖c‖2 = 1
|ϕ〉 :=

∑
j cj |ϕj〉

measurement statistics:
qi = |

∑
j cj〈ξi |ϕj〉|2

interference!

. . . in D: convex combination
(mixture, “weighted average”)

take 0 ≤ pj ∈ R, ‖p‖1 = 1
% :=

∑
j pj |ϕj〉〈ϕj |

measurement statistics:
qi =

∑
j pj |〈ξi |ϕj〉|2

no interference!
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Introduction

Recall IV. – Classical “composite systems”

two observables in classical case

two sets of mutually exclusive events (d1, d2):
e.g. X and Y prob. vars. can take d1 resp. d2 different values

d1 × d2 different pure states: δ12;ij = (0, . . . , 1, . . . , 0) ∈ Rd1 ⊗ Rd2

e.g. X = xi and Y = yj with certainty

different pure states δ12;ij , with p12;ij relative frequencies, 7→ joint
prob. dens. (mixed state): p12 =

∑
ij p12;ijδ12;ij ∈ ∆12 ⊂ Rd1 ⊗ Rd2

marginal state: p12 7→ p2 = Sum1 p12, with (p2)j = p2,j =
∑

i p12;ij

after measuring X to be xi , state collapses p12 7→ p2|i :
conditional state with (p2|i )j = p12;ij/p1;i (Bayes’)

doesn’t matter if the two sets of events (prob. var.) correspond
- to two different properties of the same system, or
- to (same or different) properties of two different systems
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Introduction

Recall V. – Quantum composite systems

two observables in quantum case

does matter if the two sets of events (observables) correspond
- to two different properties of the same system, or
- to (same or different) properties of two different systems

in the former case, the observables usually [X ,Y ] 6= 0

in the latter case, the observables [X ⊗ I, I⊗ Y ] = 0

two subsystems

two subsystems, H1, H2 Hilbert spaces, da = dimHa

state vectors: |ψ12〉 ∈ H1 ⊗H2 = H12

mixed state: %12 =
∑

i pi |ψ12;i 〉〈ψ12;i | ∈ D12 ⊂ LinSAH1 ⊗ LinSAH2

marginal state: %12 7→ %2 = Tr1 %12, with (%2)j j ′ =
∑

i %
i j
i j ′ ,

conditional state (of subsystem!): ill-defined in general,
can only be defined w.r.t. measurement
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Single systems States

States of a system – Classical case

in general

pure states: δj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd

ensemble of systems in δj with pj relative frequencies 7→
mixed states: p = (p1, . . . , pd) =

∑
j pjδj ∈ ∆ ⊂ Rd

∆ simplex, the convex hull of the pure states: ∆ = Conv{δj}
finite number (d) of pure states, decomposition is unique!

equivalently, ∆ = {p ∈ Rd | p ≥ 0, Sum p = 1}

p1

p2

( 1
2
,

1

2
)

p = (p1, p2)

example: bit (d = 2)

pure states: δ1 = (1, 0), δ2 = (0, 1),

states p = (p1, p2)

pure states: p1 = 1 or p2 = 1

center: ( 1
2 ,

1
2 ) “white noise”
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Single systems States

States of a system – Classical case

in general

pure states: δj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd

ensemble of systems in δj with pj relative frequencies 7→
mixed states: p = (p1, . . . , pd) =

∑
j pjδj ∈ ∆ ⊂ Rd

∆ simplex, the convex hull of the pure states: ∆ = Conv{δj}
finite number (d) of pure states, decomposition is unique!

equivalently, ∆ = {p ∈ Rd | p ≥ 0, Sum p = 1}

p1

p2

p3

( 1
3
,

1

3
,

1

3
) p = (p1, p2, p3)

example: trit (d = 3)

pure states: δ1 = (1, 0, 0),. . .

states p = (p1, p2, p3)

pure states: p1 or p2 or p3 = 1

center: ( 1
3 ,

1
3 ,

1
3 ) “white noise”
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Single systems States

States of a system – Quantum case

in general

pure states: π = |ψ〉〈ψ| ∈ P ⊂ LinSAH (geom.: P ∼= CPd−1)

ensemble of systems in πj with pj relative frequencies 7→
mixed states: % =

∑
j pjπj ∈ D ⊂ LinSAH (D ⊂ Rd2−1)

D convex body, the convex hull of the pure states: D = ConvP
continuously many pure states, decomposition is not unique!

equivalently, D = {% ∈ LinSAH | % ≥ 0,Tr % = 1}

̺

D(C2) ∼= D
3

1

2

3
example: qubit (d = 2)

P(C2) ∼= CP1 ∼= S2: Bloch sphere

r Bloch vector % = 1
2 (I +

∑
µ rµσµ)

pure st.: |r| = 1, mixed st.: |r| < 1

center: |r| = 0 “white noise”
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Single systems States

States of a system – Quantum case

in general:
dimD = d2 − 1,
dimP = 2(d − 1)

?

example: qudit (d > 2)

set of pure states:
P ∼= CPd−1 ∼= S2d−1/S1

not a sphere anymore

but a subset (of zero measure)
on the surface of a sphere,
its center: white noise 1

d I

set of states: D = ConvP
inside: rk % = d

on the boundary: rk % < d
(not necessarily pure states)

pure states (P): rk % = 1
(extremal points)
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Single systems States

States of a system – Quantum case

special: 3D-section containing
four orthogonal pure states
is a tetrahedron (simplex)

|ϕ0〉〈ϕ0|

|ϕ1〉〈ϕ1|

|ϕ2〉〈ϕ2|

|ϕ3〉〈ϕ3|

in general, intersection with a
hyperplane is not even a
polytope

example: qudit (d > 2)

set of pure states:
P ∼= CPd−1 ∼= S2d−1/S1

not a sphere anymore

but a subset (of zero measure)
on the surface of a sphere,
its center: white noise 1

d I

set of states: D = ConvP
inside: rk % = d

on the boundary: rk % < d
(not necessarily pure states)

pure states (P): rk % = 1
(extremal points)
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Szilárd Szalay (SZFI) Entanglement and correlations 4 September 2014 14 / 74



Single systems Maps of states

Maps of states – Overview

∆ ∆′

D D
′

stoch. map

TPCP map

measurement

inclusion

in general

stochastic map: ∆→ ∆′

TPCP map: D → D′

basis-dependent inclusion: ∆→ D′

measurement (POVM): D → ∆′

example: bit and qubit (d = 2)

p1

p2

( 1
2
,
1

2
)

p = (p1, p2)

δ1

δ2

|ϕ2〉〈ϕ2|

|ϕ1〉〈ϕ1|

7−→
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Single systems Maps of states

Transformations of states – Classical case

in general

recall: ∆ = {p ∈ Rd | p ≥ 0, Sum p = 1}
A : ∆→ ∆′ map is a stochastic map (Markov), i.e.

p 7−→ p′ = A(p), A(p) ≥ 0, Sum(Ap) = 1

A bistochastic if stochastic and unital: from white noise it can make
only white noise A( 1

d 1) = 1
d 1 (d = d ′ enforced automatically)

representation by stochastic matrix A: Aij ≥ 0,
∑

i Aij = 1,
if bistochastic then also

∑
j Aij = 1

examples

bit (d = 2): A(t) =
[

t 1−t
1−t t

]
(also bistochastic)

time evolution of a closed system: A = Rσ permut. matrix (σ ∈ Sd)

adding an uncorrelated ancilla, or dropping it
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Single systems Maps of states

Transformations of states – Quantum case

in general

recall: D = {% ∈ LinSAH | % ≥ 0,Tr % = 1}
E : D → D′ map is a trace preserving complete positive map (TPCP)

% 7−→ %′ = E(%), E(%) ≥ 0, Tr E(%) = 1, E ⊗ I(ω) ≥ 0

complete positivity: preserves the positivity of not only the system,
but also the system and its (arbitrary) environment (quantum!)

E bistochastic if stochastic and unital: from white noise it can make
only white noise E( 1

d I) = 1
d I (d = d ′ enforced automatically)

Kraus representation: E(%) =
∑

i Ki%K †i , with
∑

i K †i Ki = I,

if bistochastic then also
∑

i KiK
†
i = I

examples

time evolution of a closed system: K = U unitary, E(%) = U%U†

adding an uncorrelated ancilla, or dropping it
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Single systems Maps of states

Measurements – Classical case

in general

observable: x = (x1, . . . , xd)

state: p = (p1, . . . , pd) =
∑

i piδi

observing xi outcome: p 7→ p′i = δi collapses,
this is the result of a projection Pi = δi ⊗ δTi

p
sel.7−→


p′(i) =

1

q(i)
Pip ≡ δi

q(i) = Sum Pip ≡ pi

 mix.7−→ p′ =
∑

i
q(i)p

′
(i) ≡ p

non-selective measurement: doesn’t disturb the state

selective measurement: pure states aren’t disturbed
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Single systems Maps of states

Measurements – Quantum case

in general

observable: X =
∑

i xi |ξi 〉〈ξi |
state: % =

∑
i pi |ψi 〉〈ψi |

observing xi outcome: % 7→ %′i = |ξi 〉〈ξi | collapses,

this is the result of a projection Pi (·)P†i = |ξi 〉〈ξi |(·)|ξi 〉〈ξi |

%
sel.7−→


%′(i) =

1

q(i)
Pi%P†i ≡ |ψi 〉〈ψi |

q(i) = Tr Pi%P†i ≡ %
i
i


mix.7−→ %′ =

∑
i
q(i)%

′
(i) =

∑
i
Pi%P†i 6≡ %

even non-selective measurement disturbs the state

even pure states are disturbed by selective measurement
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Single systems Maps of states

Generalized measurements – Classical case

in general

indirect projective measurements (meas. of an interacting ancilla)

p
sel.7−→


p′(i) =

1

q(i)
SumAnc(1⊗ Pi )R(p⊗ pAnc) =

1

q(i)
Mip

q(i) = Sum(1⊗ Pi )R(p⊗ pAnc) = Sum Mip


mix.7−→ p′ =

∑
i
q(i)p

′
(i) = SumAnc R(p⊗ pAnc) = Mp

outcomes, labelled by i , are given by sum-non-increasing stochastic
maps Mi (instrument), for which M =

∑
i Mi is (sum-preserving)

stochastic

even non-selective measurement disturbs the state

even pure states are disturbed by selective measurement
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Single systems Maps of states

Generalized measurements – Quantum case

in general

indirect projective measurements (meas. of an interacting ancilla)

%
sel.7−→


%′(i) =

1

q(i)
TrAnc(I⊗ Pi )U(%⊗ %Anc)U†(I⊗ Pi )

† =
1

q(i)
Mi (%)

q(i) = Tr(I⊗ Pi )U(%⊗ %Anc)U†(I⊗ Pi )
† = TrMi (%)


mix.7−→ %′ =

∑
i
q(i)%

′
(i) = TrAnc U(%⊗ %Anc)U† =M(%)

outcomes, labelled by i , are given by trace-non-increasing CP maps
{Mi} (instrument), for which M =

∑
iMi is trace-preserving CP

Positive Operator Valued Measure (POVM): {Ei =
∑

j M†ijMij ≥ 0}
representation thm. (Naimark’s): All such instrument {Mi} can be
constructed by suitable ancilla with {Pi}, %Anc and U

corollary: there are environmental representation of all E TPCP
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Single systems Mixedness of states

Mixedness by partial ordering – Classical case

in general

majorization for classical states:

p � q
def.⇐⇒

k∑
i=1

p↓i ≤
k∑

i=1

q↓i ∀k = 1, 2, . . . ,m,

partial order, up to permutations, 1
d 1 � p � δ1

p1

p2

p

p1

p2

p3

p
p
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Single systems Mixedness of states

Mixedness by partial ordering – Quantum case

in general

given %: spectrum is the purest of any mixing weights, p � Spect %

majorization for quantum states:

% � ω def.⇐⇒ Spect % � Spectω

partial order, up to unitaries, 1
d I � % � |ψ〉〈ψ| = π

̺

D(C2) ∼= D
3

1

2

3 example: qubit (d = 2)

P(C2) ∼= CP1 ∼= S2: Bloch sphere

Bloch vector: % = 1
2 (I +

∑3
i=1 riσi )

pure states: |r| = 1

center: |r| = 0 “white noise”

% � ω ⇐⇒ |r%| ≤ |rω|
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Single systems Mixedness of states

Mixedness by entropies – Classical case

in general

mixedness: f : ∆→ R Schur-concave function

p � q =⇒ f (p) ≥ f (q)

entropies:

S(p) = −
∑

i
pi ln pi , Shannon entropy

SR
α (p) =

1

1− α
ln
∑

i
pαi , Rényi entropy

STs
α (p) =

1

1− α

(∑
i
pαi − 1

)
, Tsallis entropy

vanish exactly for pure states δi , taking maxima for white noise 1
d 1

Shannon’s noiseless coding thm:
Shannon entropy = information content
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Single systems Mixedness of states

Mixedness by entropies – Quantum case

in general

mixedness: f : D → R Schur-concave function

% � ω =⇒ f (%) ≥ f (ω).

given %, spectrum has the lowest entr. S(%) := min S(p) = S(Spect %)

quantum entropies: entropies of the spectrum

S(%) = −Tr % ln %, von Neumann entropy

SR
α (%) =

1

1− α
ln Tr %α, quantum Rényi entropy

STs
α (%) =

1

1− α
(
Tr %α − 1

)
, quantum Tsallis entropy

vanish exactly for pure states |ψ〉〈ψ|, taking max. for white noise 1
d I

Schumacher’s noiseless coding thm:
von Neumann entropy = quantum information content
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Single systems Distinguishability of states

Distinguishability – Classical case

in general

relative entropy of p,q ∈ ∆ states

D(p||q) =
∑

i
pi (ln pi − ln qi ) Kullback-Leibler divergence

there are Rényi, Tsallis generalizations too

not symmetric, however, still has the most beautiful properties

nonnegative, vanishes iff p = q

Sanov’s thm (hypothesis testing):
relative entropy = distinguishability

example

in an experiment described by q, the probability of that p is observed
after finite n measurements goes ∼ e−nD(p||q) for n large

biased coin: pbiased = (1, 0), fair coin pfair = (1/2, 1/2),
D(pbiased||pfair) = ln 2, D(pfair||pbiased) =∞
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Single systems Distinguishability of states

Distinguishability – Quantum case

in general

quantum relative entropy of %, ω ∈ D states

D(%||ω) = Tr %(ln %− lnω) Umegaki relative entropy

% and ω do not usually have common eigenbasis

there are Rényi, Tsallis generalizations too

not symmetric, however, still has the most beautiful properties

nonnegative, vanishes iff % = ω

quantum Stein’s lemma (hypothesis testing):
relative entropy = distinguishability
(rate of decaying of the probability of confusing)
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Single systems Compatibility of notions

Mixedness and distinguishability – w.r.t. classical maps

compatibility with the notion of mixedness

Hardy, Littlewood and Pólya’s (HLP) lemma:
bistochastic maps make states noisier

q � p ⇐⇒ ∃A bistochastic, such that q = A(p)←− [ p
corollary: entropies increase in bistochastic Markov chain

A bistochastic =⇒ S
(
p
)
≤ S

(
A(p)

)
compatibility with the notion of distinguishability

relative entropy is monotone decreasing under stochastic maps:

A stochastic =⇒ D
(
p||q

)
≥ D

(
A(p)||A(q)

)
distinguishability decreases in Markov chains

note that D(p|| 1d 1) = ln d − S(p), so HLP follows
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Single systems Compatibility of notions

Mixedness and distinguishability – w.r.t. quantum maps

compatibility with the notion of mixedness

quantum Hardy, Littlewood and Pólya’s (qHLP) lemma:
bistochastic maps make states noisier

ω � % ⇐⇒ ∃E bistochastic TPCP, such that ω = E(%)←− [ %
corollary: entropies increase in the chain of bistochastic TPCP

E bistochastic TPCP =⇒ S
(
%
)
≤ S

(
E(%)

)
compatibility with the notion of distinguishability

quantum relative entropy is monotone decreasing under TPCP maps
(proven by Lieb, Petz):

E TPCP =⇒ D
(
%||ω

)
≥ D

(
E(%)||E(ω)

)
distinguishability decreases in the chain of TPCP maps

note that D(%|| 1d I) = ln d − S(%), so qHLP follows
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Single systems Compatibility of notions

Mixedness and distinguishability – Overview

some abstractions

the discussed monotonity properties seem to be the most important
ones of classical and quantum entropies and relative entropies

A stochastic =⇒ D
(
p||q

)
≥ D

(
A(p)||A(q)

)
A bistochastic =⇒ S

(
p
)
≤ S

(
A(p)

)
E TPCP =⇒ D

(
%||ω

)
≥ D

(
E(%)||E(ω)

)
E bistochastic TPCP =⇒ S

(
%
)
≤ S

(
E(%)

)
generalized classical/quantum entropies and relative entropies,
e.g. classical Tsallis/Rényi entropies and Tsallis/Rényi relative
entropies; as well as the several extensions to the quantum case.

moreover, let us stress that the notion of mixedness/distinguishability
itself should be considered as a property which increases under
bistochastic maps/decreases under stochastic maps
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Bipartite systems States

States of a bipartite system – Classical case

in general

we have subsystems 1 and 2, with pure and mixed states
δ1;i = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd1 , δ2;j = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd2

p1 =
∑

i p1;iδ1;i ∈ ∆1 = Conv{δ1;i} ⊂ Rd1 ,
p2 =

∑
j p1;jδ1;j ∈ ∆2 = Conv{δ2;j} ⊂ Rd2

pure states are always of the form δ12;ij = δ1;i ⊗ δ2;j ∈ Rd1 ⊗ Rd2

mixed states: p12 =
∑

ij p12;ijδ12;ij ∈ ∆12 = Conv{δ12;ij} ⊂ Rd1 ⊗Rd2

decomposition is unique!

equivalently, ∆12 = {p12 ∈ Rd1 ⊗ Rd2 | p12 ≥ 0, Sum p12 = 1}

states of the subsystems

marginal state: p12 7→ p2 = Sum1 p12, with (p2)j = p2,j =
∑

i p12;ij

after measuring event i of subsys. 1, state of 2 collapses p12 7→ p2|i :
conditional state with (p2|i )j = p12;ij/p1;i (Bayes’)
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Bipartite systems States

States of a bipartite system – Classical case

δ00

δ01

δ10

δ11

1

4
1

example: two bits (d1 = d2 = 2)

pure states:
δ12;00 = (1, 0)⊗ (1, 0) = (1, 0, 0, 0)
δ12;01 = (1, 0)⊗ (0, 1) = (0, 1, 0, 0)
δ12;10 = (0, 1)⊗ (1, 0) = (0, 0, 1, 0)
δ12;11 = (0, 1)⊗ (1, 0) = (0, 0, 0, 1)

mixed states:
p12 = (p12;00, p12;01, p12;10, p12;11)

center: (1/4, 1/4, 1/4, 1/4) “white noise”
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Bipartite systems States

States of a bipartite system – Quantum case

in general

we have subsystems 1 and 2, with Hilbert spaces H1, H2, with pure
and mixed states
π1 = |ψ1〉〈ψ1| ∈ P1 ⊂ LinSAH1, π2 = |ψ2〉〈ψ2| ∈ P2 ⊂ LinSAH2

%1 =
∑

i p1;iπ1;i ∈ D1 = ConvP1 ⊂ LinSAH1,
%2 =

∑
i p1;iπ1;i ∈ D2 = ConvP2 ⊂ LinSAH2

pure states: π12 = |ψ12〉〈ψ12|, are usually π12 6= π1 ⊗ π2

mixed st.: % =
∑

i piπ12;i ∈ D12 = ConvP12 ⊂ LinSAH1 ⊗ LinSAH2

decomposition is not unique!

equivalently, D12 = {%12 ∈ LinSAH1⊗ LinSAH2 | %12 ≥ 0,Tr %12 = 1}

states of the subsystems

marginal state: %12 7→ %2 = Tr1 %12, with (%2)j j ′ =
∑

i %
i j
i j ′ ,

conditional state: depends on measurement, we will see later
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Bipartite systems States

States of a bipartite system – Quantum case

example: mixed states of two qubits (d1 = d2 = 2)

in Pauli basis {I, σ1, σ2, σ3}, coefficients r, s ∈ R3, t ∈ R3 ⊗ R3

%12 =
1

4

(
I⊗ I +

∑
µ

rµσµ ⊗ I +
∑

ν
sνI⊗ σν +

∑
µν

tµνσµ ⊗ σν
)

which parameters r, s, t lead to %12 ≥ 0?

marginals (one qubit states, r, s Bloch vectors):
%1 = Tr2 %12 = 1

2 (I +
∑

µ rµσµ), %2 = Tr1 %12 = 1
2 (I +

∑
ν rνσν)

special: Pauli-diagonal states, r = s = 0, t = diag(t1, t2, t3)

%12 =
1

4

(
I⊗ I +

∑
µ

tµσµ ⊗ σµ
)

%12 ≥ 0 iff (t1, t2, t3) in a tetrahedron (will see later)

Szilárd Szalay (SZFI) Entanglement and correlations 4 September 2014 38 / 74



Bipartite systems States

States of a bipartite system – Quantum case: state vectors

Schmidt decomposition of state vectors

let {|ϕ1;i 〉} and {|ϕ2;j〉} bases in H1, H2

state vector of bipartite system: |ψ12〉 =
∑d1,d2

i ,j=1 ψ
ij
12|ϕ1;i 〉 ⊗ |ϕ2;j〉

based on the UDV-decomposition of matrices, by local unitary basis
transf., |ψ12〉 can be written in the LU-canonical form (Schmidt)

|ψ12〉 =

dmin∑
i=1

√
ηi |ϕ′1;i 〉 ⊗ |ϕ′2;i 〉

with the Schmidt coefficients {√ηi}, with ηi ≥ 0,
∑

i ηi = ‖ψ‖2 = 1

the states of the subsystems in this basis:

Tr2 π12 = π1 =

dmin∑
i=1

ηi |ϕ′1;i 〉〈ϕ′1;i | Tr1 π12 = π2 =

dmin∑
i=1

ηi |ϕ′2;i 〉〈ϕ′2;i |

so η = Spectπ1 = Spectπ2, and the Schmidt rank: rkψ = rkπ1
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Bipartite systems States

States of a bipartite system – Quantum case: state vectors

examples: state vectors of two qubits (d1 = d2 = 2)

let {|ϕ1;i 〉} and {|ϕ2;j〉} bases in H1, H2

Schmidt rank 1: e.g. |00〉, (≡ |ϕ1;0〉 ⊗ |ϕ2;0〉 abbrev.) or
1
2 (|00〉+ |01〉+ |10〉+ |11〉) = 1√

2
(|0〉+ |1〉)⊗ 1√

2
(|0〉+ |1〉)

Schmidt rank 2: e.g. Bell states

|B0〉 =
1√
2

(|00〉+ |11〉) |B1〉 =
1√
2

(|01〉+ |10〉)

|B3〉 =
1√
2

(|00〉 − |11〉) |B2〉 =
−i√

2
(|01〉 − |10〉)

π1 = Tr2(|Bi 〉〈Bi |) = 1
2 |0〉〈0|+

1
2 |1〉〈1| ∼

1
2

[
1 0
0 1

]
in Schmidt form: |ψϑ〉 = cosϑ|00〉+ sinϑ|11〉, 0 ≤ ϑ ≤ π/4,

π1 = Tr2(|ψϑ〉〈ψϑ|) = cos2 ϑ|0〉〈0|+ sin2 ϑ|1〉〈1| ∼
[

cos2 ϑ 0
0 sin2 ϑ

]
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Bipartite systems States

States of a bipartite system – Quantum case

|B0〉〈B0|

|B1〉〈B1|

|B2〉〈B2|

|B3〉〈B3|

t1

t2

t3

example: two qubits (d1 = d2 = 2)

special: Bell-diagonal state
%12 =

∑
i pi |Bi 〉〈Bi |

it turns out: these are just the same
as Pauli-diagonal states
(different parametrizations)

%12 =
1

4

(
I⊗ I +

∑
µ

tµσµ ⊗ σµ
)

=
∑

i
pi |Bi 〉〈Bi |

spec.spec.: Werner states (noisy Bell):

%12 = w |B2〉〈B2|+ (1− w)
1

4
I⊗ I

for −1/3 ≤ w ≤ 1
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Bipartite systems States

States of a bipartite system – Quantum case

|B0〉〈B0|

|B1〉〈B1|

|B2〉〈B2|

|B3〉〈B3|

t1

t2

t3

example: two qubits (d1 = d2 = 2)

special: Bell-diagonal state
%12 =

∑
i pi |Bi 〉〈Bi |

it turns out: these are just the same
as Pauli-diagonal states
(different parametrizations)

%12 =
1

4

(
I⊗ I +

∑
µ

tµσµ ⊗ σµ
)

=
∑

i
pi |Bi 〉〈Bi |

spec.spec.: Werner states (noisy Bell):

%12 = w |B2〉〈B2|+ (1− w)
1

4
I⊗ I

for −1/3 ≤ w ≤ 1
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Bipartite systems Maps of states

Local maps of states – Overview

“global” maps of states

classical case: A : ∆12 → ∆′12 stochastic maps + measurements

quantum case: E : D12 → D′12 TPCP maps + measurements

“local” maps of states: respecting the subsystem structure

Local Classical (LC): stoch. maps+class meas. acting on a subsystem
(sometimes a bit ill-defined in the quantum case, but useful if it’s not)

Local Quantum (LQ): TPCP maps+meas. acting on a subsystem

and we have also “communication”

Classical Communication (CC): transferring classical information,
e.g., in bits, that is, outcomes of local measurements
(the modell of classical interaction among subsystems)

Quantum Communication (QC): transferring quantum information,
e.g., in qbits (the modell of quantum interaction among subsystems)
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Bipartite systems Maps of states

Local Quantum op. + Classical Communication = LQCC

example: teleportation (three qubits d1 = 12 = d3 = 2)

two distant labs (in the sense that QC is expensive)

three subsystems with
(
H1 ⊗H2

)
⊗H3, with the state vector

|ψ〉 = |χ〉 ⊗ |B0〉 ≡ 1
2

∑
i |Bi 〉 ⊗ σi |χ〉

projective measurement in 12 subsys. {Pi = |Bi 〉〈Bi |}
if measurement output is i then |ψ′(i)〉 = |Bi 〉 ⊗ σi |χ〉, with q(i) = 1/4

output should be communicated to subsystem 3 (2 bits)

then in subsystem 3, transformation σ−1
i = σi results in |Bi 〉 ⊗ |χ〉

the shared Bell state is used up (a resource)
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Bipartite systems Maps of states

Local Quantum op. + Classical Communication = LQCC

example: the simplest distillation protocoll (two qubits d1 = 12 = 2)

shared systems of state vectors in H1 ⊗H2

|ψ〉 =
√
η0|00〉+

√
η1|11〉, with η0 ≥ η1 > 0, η0 + η1 = 1

we want to have |B0〉 = 1√
2

(
|00〉+ |11〉

)
first subsystem: measure with operators {M0,M1}

M0 =

[√
η1/η0 0
0 1

]
, M1 =

[√
1− η1/η0 0

0 0

]
if measurement output is 0 then |ψ′(0)〉 = |B0〉 (success)

if measurement output is 1 then |ψ′(1)〉 = |00〉 (failure)

output should be communicated to the second subsystem (1 bit)

this is actually a stochastic LQ+CC (SLQCC):
probability of success q(0) = 1− (η0 − η1), fail q(1) = η0 − η1
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Bipartite systems Correlations of states

Recall – Correlations of observables vs. of states

usual statistical quantities

covariance of two probabilistic variables:
COV(X ,Y ) = 〈(X − 〈X 〉)(Y − 〈Y 〉)〉 = 〈XY 〉 − 〈X 〉〈Y 〉
correlation is a normalized version of this:
−1 ≤ CORR(X ,Y ) = COV(X ,Y )/

√
COV(X ,X ) COV(Y ,Y ) ≤ 1

more essential: correlations of states

classical: COV(X ,Y ) =
∑

ij(p12;ij − p1;ip2;j)xiyj
correlation of the events (meas. outcomes) Cij = p12;ij − p1;ip2;j

correlation “in the state itself:” C := p12 − p1 ⊗ p2

then COV(X ,Y ) = CTx⊗ y

quantum: correlation of the state itself: Γ := %12 − %1 ⊗ %2

then COV(X ,Y ) = Tr ΓTX ⊗ Y

in q.m. there are many (nontrivially) different observables in a system

C and Γ remain meaningful even if there are no values, only events
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Bipartite systems Correlations of states

Correlations – Classical case

classical case: uncorrelated / correlated

correlation in the states is characterized by C := p12 − p1 ⊗ p2

events i and j are uncorrelated iff Cij = 0, that is, p12;ij = p1;ip2;j

state is uncorrelated (p12 ∈ ∆uncorr) iff C = 0, that is, p12 = p1 ⊗ p2

(iff 〈XY 〉 = 〈X 〉〈Y 〉 for all observables)

else it is correlated (p12 ∈ ∆12 \∆uncorr)

uncorrelated states

pure states are δ12;ij = δ1;i ⊗ δ2;j , automatically uncorrelated

all states are mixtures of pure (then uncorrelated) states (uniquely),
uncorrelated states are mixtures by product mixing weights

(a bit tautologic, but helps the quantum analogy)

selective measurement

selective measurement on a subsystem disturbes the state of the other
iff the state is correlated

Szilárd Szalay (SZFI) Entanglement and correlations 4 September 2014 48 / 74



Bipartite systems Correlations of states

Correlations – Classical case

classical case: uncorrelated / correlated

correlation in the states is characterized by C := p12 − p1 ⊗ p2

events i and j are uncorrelated iff Cij = 0, that is, p12;ij = p1;ip2;j

state is uncorrelated (p12 ∈ ∆uncorr) iff C = 0, that is, p12 = p1 ⊗ p2

(iff 〈XY 〉 = 〈X 〉〈Y 〉 for all observables)

else it is correlated (p12 ∈ ∆12 \∆uncorr)

δ00

δ01

δ10

δ11 example: two bits (d1 = d2 = 2)

pure states: δ12;00 = (1, 0)⊗ (1, 0), . . .

mixed states:
p12 = (p12;00, p12;01, p12;10, p12;11)

uncorrelated states: p12;ij = p1;ip2;j iff
p12;00p12;11 = p12;01p12;10

Szilárd Szalay (SZFI) Entanglement and correlations 4 September 2014 48 / 74



Bipartite systems Correlations of states

Correlations – Quantum case I.: correlation

quantum case I: uncorrelated / correlated

correlation in the states is characterized by Γ := %12 − %1 ⊗ %2

state is uncorrelated (%12 ∈ Duncorr) iff Γ = 0, that is, %12 = %1 ⊗ %2

(iff 〈XY 〉 = 〈X 〉〈Y 〉 for all observables)

then we say that the two subsystems are uncorrelated

else it is correlated (%12 ∈ D12 \ Duncorr)

pure states

pure states are not uncorrelated automatically! π12 6= π1 ⊗ π2,
if a pure state is correlated, then the correlation is of quantum origin

all states are mixtures of pure states (not uniquely), uncorrelated
states are mixtures of pure uncorr. states by product mixing weights

selective measurement

selective measurement on a subsystem disturbes the state of the other
iff the state is correlated
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Bipartite systems Correlations of states

Correlations – Quantum case I.: correlation

quantum case I: uncorrelated / correlated

correlation in the states is characterized by Γ := %12 − %1 ⊗ %2

state is uncorrelated (%12 ∈ Duncorr) iff Γ = 0, that is, %12 = %1 ⊗ %2

(iff 〈XY 〉 = 〈X 〉〈Y 〉 for all observables)

then we say that the two subsystems are uncorrelated

else it is correlated (%12 ∈ D12 \ Duncorr)

|B0〉〈B0|

|B1〉〈B1|

|B2〉〈B2|

|B3〉〈B3|

1

4
I

example: Bell-diag. states (d1 = d2 = 2)

a special section of the whole D12

pure states: |Bi 〉〈Bi |
center: 1

4 I “white noise”

uncorrelated states: the white noise
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Bipartite systems Correlations of states

Correlations – Quantum case I.: correlation

quantum case I: uncorrelated / correlated

correlation in the states is characterized by Γ := %12 − %1 ⊗ %2

state is uncorrelated (%12 ∈ Duncorr) iff Γ = 0, that is, %12 = %1 ⊗ %2

(iff 〈XY 〉 = 〈X 〉〈Y 〉 for all observables)

then we say that the two subsystems are uncorrelated

else it is correlated (%12 ∈ D12 \ Duncorr)

|00〉〈00|

|01〉〈01|

|10〉〈10|

|11〉〈11|

1

4
I

example: embedded classical (d1 = d2 = 2)

a special section of the whole D12

pure states: |ij〉〈ij | uncorrelated

mixed states:
∑

ij pij |ij〉〈ij |
center: 1

4 I “white noise”

uncorr.: pij = pipj iff p00p11 = p01p10
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Bipartite systems Correlations of states

Correlations – Quantum case: pure states (a detour)

by Schmidt decomposition of state vectors

(I) pure states are not uncorrelated automatically! π12 6= π1 ⊗ π2,
if a pure state is correlated, then the correlation is of quantum origin

pure state: π12 = |ψ12〉〈ψ12|, marginals: π1 = Tr2 π12, π2 = Tr1 π12

Schmidt-canonical form: |ψ12〉 =
√
η1|11〉+

√
η2|22〉+ · · ·+√ηd |dd〉

(II) marginals are not necessary pure since Spectπ1 = Spectπ2 = η
“the best possible knowledge of the whole does not involve the best
possible knowledge of its parts” (Schrödinger)

uncorrelated states: π12 = π1 ⊗ π2 iff |ψ12〉 = |ψ1〉 ⊗ |ψ2〉
or, π12 uncorrelated iff π1 and π2 are pure (η pure),
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Bipartite systems Correlations of states

Correlations – Quantum case: pure states (a detour)

|00〉

|01〉

|10〉

|11〉

√
η0|00〉+√

η1|11〉

η0

η1

example: two qubit pure sts. (d1 = d2 = 2)

two qubit state vectors |ψ12〉 =
ψ00

12|00〉+ψ01
12|01〉+ψ10

12|10〉+ψ11
12|11〉

spec: ψij
12 ≥ 0

uncorrelated states: ψij
12 = ψi

1ψ
j
2 iff

ψ00
12ψ

11
12 = ψ01

12ψ
10
12

spec.spec.: Schmidt form:
|ψ12〉 =

√
η0|00〉+

√
η1|11〉
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Bipartite systems Correlations of states

Correlations – Quantum case II.: discord

quantum case II: non-discordant (“classical”) / discordant (“non-classical”)

local inclusion of classical states into quantum ones:
fixing local bases {|ϕ1;i 〉}, {|ϕ2;i 〉}, for pure states δ1;i 7→ |ϕ1;i 〉〈ϕ1;i |
state is non-discordant (%12 ∈ Dnondsc) if it’s an image of a class. one:
%12 =

∑
ij pijπ1;i ⊗ π2;j with {π1;i}, {π2;i} orthogonal

else it is discordant (%12 ∈ D12 \ Dnondsc)

if uncorr. then nondisc. Duncorr ⊂ Dnondsc, pure st. Puncorr = Pnondsc

selective measurement

selective measurement on a subsystem can disturb the state of the
other iff the state is correlated

for nondiscordant states: one can find local selective measurement
which doesn’t disturb the system

can be diagonalized by local unitaries, U1 ⊗ U2%12U†1 ⊗ U†2 diagonal
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Bipartite systems Correlations of states

Correlations – Quantum case II.: discord

quantum case II: non-discordant (“classical”) / discordant (“non-classical”)

local inclusion of classical states into quantum ones:
fixing local bases {|ϕ1;i 〉}, {|ϕ2;i 〉}, for pure states δ1;i 7→ |ϕ1;i 〉〈ϕ1;i |
state is non-discordant (%12 ∈ Dnondsc) if it’s an image of a class. one:
%12 =

∑
ij pijπ1;i ⊗ π2;j with {π1;i}, {π2;i} orthogonal

else it is discordant (%12 ∈ D12 \ Dnondsc)

if uncorr. then nondisc. Duncorr ⊂ Dnondsc, pure st. Puncorr = Pnondsc

|B0〉〈B0|

|B1〉〈B1|

|B2〉〈B2|

|B3〉〈B3|

t1

t2

t3

example: Bell-diag. states (d1 = d2 = 2)

a special section of the whole D12,
pure states: |Bi 〉〈Bi |
uncorrelated states: white noise only

nondisc.: %12 = 1
4 (I⊗ I + tµσµ ⊗ σµ)
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Bipartite systems Correlations of states

Correlations – Quantum case III.: entanglement

quantum case III: separable / entangled

in the classical case: all states are mixtures of uncorrelated states

state is separable: %12 ∈ Dsep if it is the mixture of uncorrelated
states (Werner): %12 =

∑
k pk%1;k ⊗ %2;k

else it is entangled (%12 ∈ D12 \ Dsep) (decision of this is difficult)

not entirely nondiscordant, Dnondsc ⊂ Dsep, pure states Pnondsc = Psep

convexity

states: D = ConvP convex hull of pure states

separable states: Dsep = ConvDuncorr convex hull of uncorr. states

extremal points: pure states (there are separable and entangled ones)
separable states can also be written as %12 =

∑
l qlπl ,1 ⊗ πl ,2

separable states: Dsep = ConvPsep, convex hull of sep. pure states
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Bipartite systems Correlations of states

Correlations – Quantum case III.: entanglement

quantum case III: separable / entangled

in the classical case: all states are mixtures of uncorrelated states

state is separable: %12 ∈ Dsep if it is the mixture of uncorrelated
states (Werner): %12 =

∑
k pk%1;k ⊗ %2;k

else it is entangled (%12 ∈ D12 \ Dsep) (decision of this is difficult)

not entirely nondiscordant, Dnondsc ⊂ Dsep, pure states Pnondsc = Psep

|B0〉〈B0|

|B1〉〈B1|

|B2〉〈B2|

|B3〉〈B3| example: Bell-diag. states (d1 = d2 = 2)

a special section of the whole D12,
pure states: |Bi 〉〈Bi |
uncorrelated states: white noise only

nondisc.: %12 = 1
4 (I⊗ I + tµσµ ⊗ σµ)

separable states: octahedron (PPT!)
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Bipartite systems Correlations of states

Quantum correlations – Overview

definitions

uncorr. %12 = %1 ⊗ %2 =
∑

ij pipjπ1;i ⊗ π2;j , {πa;i} orthogonal

nondisc. %12 =
∑

ij pijπ1;i ⊗ π2;j , {πa;i} orthogonal

sep. %12 =
∑

k pk%1;k ⊗ %2;k =
∑

l qlπ1;l ⊗ π2;l , {πa;i} general

nested structure

in general, Duncorr ⊂ Dnondsc ⊂ Dsep:

uncorrelated =⇒ nondiscordant (“classical”) =⇒ separable

correlated ⇐= discordant (“nonclassical”) ⇐= entangled

specially, for pure states, Puncorr = Pnondsc = Psep:

uncorrelated ⇐⇒ nondiscordant (“classical”) ⇐⇒ separable

correlated ⇐⇒ discordant (“nonclassical”) ⇐⇒ entangled
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Bipartite systems Correlations of states

Quantum correlations – Overview

definitions

uncorr. %12 = %1 ⊗ %2 =
∑

ij pipjπ1;i ⊗ π2;j , {πa;i} orthogonal

nondisc. %12 =
∑

ij pijπ1;i ⊗ π2;j , {πa;i} orthogonal

sep. %12 =
∑

k pk%1;k ⊗ %2;k =
∑

l qlπ1;l ⊗ π2;l , {πa;i} general

geometry

in general, Duncorr ⊂ Dnondsc ⊂ Dsep ⊂ D12

Dsep = ConvPsep convex set, of nonzero measure in D12 = ConvP12

Dnondsc is of zero measure in Dsep,
Duncorr is of zero measure in Dnondsc.

specially, for pure states, Puncorr = Pnondsc = Psep ⊂ P12

Dsep is of zero measure in D12,
Dnondsc is of zero measure in Dsep,
Duncorr is of zero measure in Dnondsc.
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Bipartite systems Correlations of states

Quantum correlations – w.r.t. quantum maps

definitions

uncorr. %12 = %1 ⊗ %2 =
∑

ij pipjπ1;i ⊗ π2;j , {πa;i} orthogonal

nondisc. %12 =
∑

ij pijπ1;i ⊗ π2;j , {πa;i} orthogonal

sep. %12 =
∑

k pk%1;k ⊗ %2;k =
∑

l qlπ1;l ⊗ π2;l , {πa;i} general

creation

all uncorrelated states can be created by LC from pure product state
(assuming that LC is w.r.t. the local pure states)

all nondisc. states can be created by LC+CC from pure product state
(or from uncorrelated state)
(assuming that LC is w.r.t. the local pure states)

all separable states can be created by LQ+CC from pure product state
(ultimate definition, in accordance with the distant lab paradigm)

Szilárd Szalay (SZFI) Entanglement and correlations 4 September 2014 55 / 74



Bipartite systems Measures of correlations of states

1 Introduction

2 Single systems
States
Maps of states
Mixedness of states
Distinguishability of states
Compatibility of notions

3 Bipartite systems
States
Maps of states
Correlations of states
Measures of correlations of states
Compatibility of notions
Criteria of correlations

4 References
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Bipartite systems Measures of correlations of states

Correlation measures – Classical case

classical case: correlation (measure)

correlation in the states is characterized by C = p12 − p1 ⊗ p2

let the measure of corr. be the distinguishability of p12 and p1 ⊗ p2:

D(p12||p1 ⊗ p2) = S(p1) + S(p2)− S(p12) = I (p12)

this turns out to be the mutual information I (p12)

mutual information

vanishes exactly for uncorrelated states

another (original?) definition: J(p12) := S(p2)− S2|1(p12) ≡ I (p12)
with the conditional entropy S2|1(p12) =

∑
i piS(p2|i )

with the entropy of the conditional state p2|i

meaning: information gain about the subsystem measuring the other
(this is symmetric in the classical case)
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Bipartite systems Measures of correlations of states

Correlation measures – Classical case

classical case: correlation (measure)

correlation in the states is characterized by C = p12 − p1 ⊗ p2

let the measure of corr. be the distinguishability of p12 and p1 ⊗ p2:

D(p12||p1 ⊗ p2) = S(p1) + S(p2)− S(p12) = I (p12)

this turns out to be the mutual information I (p12)

a geometric point of view

it can be proven that: argminq∈∆uncorr
D(p12||q) = p1 ⊗ p2,

so p1 ⊗ p2 is the least distinguishable (“closest”) uncorrelated state

I (p12) can be interpreted as the distinguishability from the least
distinguishable uncorrelated state:
minq∈∆uncorr D(p12||q) = D(p12||p1 ⊗ p2) = I (p12)

there are other measures of distance in ∆12 leading to other measures
of correlations, e.g.: Dα(p12,p1 ⊗ p2) = ‖p12 − p1 ⊗ p2‖α = ‖C‖α
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Bipartite systems Measures of correlations of states

Correlation measures – Quantum case I.: correlation

quantum case I: correlation (measure)

correlation in the states is characterized by Γ = %12 − %1 ⊗ %2

let the measure of corr. be the distinguishability of %12 and %1 ⊗ %2

D(%12||%1 ⊗ %2) = S(%1) + S(%2)− S(%12) =: I (%12)

I (p12) being the quantum mutual information

quantum mutual information

vanishes exactly for uncorrelated states

for pure states, D(π12||π1 ⊗ π2) = 2S(π1) = 2S(π2)
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Bipartite systems Measures of correlations of states

Correlation measures – Quantum case I.: correlation

quantum case I: correlation (measure)

correlation in the states is characterized by Γ = %12 − %1 ⊗ %2

let the measure of corr. be the distinguishability of %12 and %1 ⊗ %2

D(%12||%1 ⊗ %2) = S(%1) + S(%2)− S(%12) =: I (%12)

I (p12) being the quantum mutual information

a geometric point of view

again, it can be proven that argminω∈Duncorr
D(%12||ω) = %1 ⊗ %2,

so %1 ⊗ %2 is the least distinguishable (“closest”) uncorrelated state

I (%12) can be interpreted as the distinguishability from the least
distinguishable uncorrelated state,
minω∈Duncorr D(%12||ω) = D(%12||%1 ⊗ %2) = I (%12)

there are other measures of distance in D leading to other measures
of correlations, e.g.: Dα(%12, %1 ⊗ %2) = ‖%12 − %1 ⊗ %2‖α = ‖Γ‖α
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Bipartite systems Measures of correlations of states

Correlation measures – Quantum case II.: discord

quantum case II: discord (measure)

quantum mutual information I (%12) := S(%1) + S(%2)− S(%12)

what about the other definition, based on conditional state?
conditional sate in general is ill-defined in quantum mechanics,
however, it can be defined w.r.t. a POVM by M = {Mi},
J w.r.t. a POVM: J2|M(%12) = S(2)− S2|M(%12)
with the cond. entropy (w.r.t. M): S2|M(%12) =

∑
i piS(%2|Mi

)

with the cond. state (w.r.t. Mi ): %2|Mi
= Tr1(Mi ⊗ I)%12(Mi ⊗ I)†,

then J2|1(%12) := maxM J2|M(%12) 6≡ I (%12)

vanishes exactly for nondiscordant (“classical”) states, not symmetric

discord: D2|1(%12) = I (%12)− J2|1(%12), D1|2(%12) = I (%12)− J1|2(%12)

for pure states, D2|1(π12) = D1|2(π12) = S(π1) = S(π2)
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Bipartite systems Measures of correlations of states

Correlation measures – Quantum case II.: discord

(information-)geometric measures

let the relative entropy of discord be the distinguishability from the
least distinguishable classical state: minω∈Dnondsc

D(%12||ω)

there are other measures of distance in D leading to other measures
of discord (geometric measure of discord): minω∈Dnondsc

‖%12 − ω12‖α
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Bipartite systems Measures of correlations of states

Correlation measures – Quantum case III.: entanglement

quantum case III: entanglement (measure)

quantum case: there are pure states with mixed marginals,
so, for pure states, let the measure of entanglement be the mixedness
of the subsystem (vanishes exactly for separable pure states)

entanglement entropy: E (π12) = S(π1) = S(π2)

for mixed states, entanglement of formation:

EF(%12) = min
%12=

∑
i piπ12;i

∑
i

piE (π12;i )

i.e., “average entanglement entropy of the optimal decomposition”

vanishes exactly for separable states, EF(π12) = E (π12) for pure ones

there are Rényi/Tsallis generalizations, e.g., the concurrence

C =
√

STs
2 instead of S leads to the concurrence of formation CF,

for two qubits, this is called Wootters concurrence (explicit min!)
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Bipartite systems Measures of correlations of states

Correlation measures – Quantum case III.: entanglement

(information-)geometric measures

let the relative entropy of entanglement be the distinguishability from
the least distinguishable separable state: minω∈Dsep D(%12||ω)

there are other measures of distance in D leading to other measure of
ent. (geom. measure of entanglement): minω∈Dsep‖%12 − ω12‖α

operational measures w.r.t. LQCC protocolls

distillable entanglement and entanglement cost

ED(%12) = sup
{

r
∣∣∣ lim

m→∞

(
inf

L LQCC

∥∥L(%⊗m12 )− (|B0〉〈B0|)⊗mr
∥∥

1

)
= 0
}

EC(%12) = inf
{

r
∣∣∣ lim

m→∞

(
inf

L LQCC

∥∥L((|B0〉〈B0|)⊗mr
)
− %⊗m12

∥∥
1

)
= 0
}

for pure states ED(π12) = EC(π12) = EF(π12) = E (π12) = S(π1)

there are undistillable states (bound entangled) Dsep ⊂ Dbound ⊂ D12
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Bipartite systems Measures of correlations of states

Measures of quantum correlations

|B0〉〈B0|

|B1〉〈B1|

|B2〉〈B2|

|B3〉〈B3|

examples: Werner states (d1 = d2 = 2)

%12 = w |B2〉〈B2|+ (1− w) 1
4 I⊗ I

for −1/3 ≤ w ≤ 1

uncorrelated, classical: w = 0,
separable w ≤ 1/3,
LHVM for CHSH: w ≤ 1/

√
2

correlation (blue):
I (%12) = 2 ln 2− S(%12)

geom. discord (green):
minω12∈Dnondsc

‖%12 − ω12‖2 = w 2/2

Wootters concurrence (dashed red):
CF(%12) = (3w − 1)/2, (1/3 ≤ w)

entanglement of formation (red):
EF(%12) through CF(%12)
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Bipartite systems Measures of correlations of states

Measures of quantum correlations
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for −1/3 ≤ w ≤ 1

uncorrelated, classical: w = 0,
separable w ≤ 1/3,
LHVM for CHSH: w ≤ 1/

√
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correlation (blue):
I (%12) = 2 ln 2− S(%12)

geom. discord (green):
minω12∈Dnondsc

‖%12 − ω12‖2 = w 2/2

Wootters concurrence (dashed red):
CF(%12) = (3w − 1)/2, (1/3 ≤ w)

entanglement of formation (red):
EF(%12) through CF(%12)
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Bipartite systems Compatibility of notions

Measures of quantum correlations – w.r.t. quantum maps

creation

all uncorrelated states can be created by LC from pure product state
(assuming that LC is w.r.t. the local pure states)

all nondisc. states can be created by LC+CC from pure product state
(or from uncorrelated state)
(assuming that LC is w.r.t. the local pure states)

all separable states can be created by LQ+CC from pure product state

monotonity

correlation: quantity/notion which doesn’t increase under LC
(it can increase if CC is allowed) (works for classical states)

discord: quantity/notion which doesn’t increase under LC+CC
(but it can increase if LQ is allowed) doesn’t make sense!

entanglement: quantity/notion which doesn’t incr. under LQ+CC
(it can increase only if QC is allowed) (distant lab paradigm)
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Bipartite systems Criteria of correlations

Criteria of correlations – Overview

in general

task: decide whether a state shows correlation/discord/entanglement
(we are usually not able to evaluate a discord/entanglement measure)

deciding whether a classical state p12 ∈ ∆12 is uncorrelated is easy:

p12 ∈ ∆uncorr ⇐⇒ p12 = (Sum2 p12)⊗ (Sum1 p12)

deciding whether a quantum state %12 ∈ D12 is uncorrelated is easy:

%12 ∈ Duncorr ⇐⇒ %12 = (Tr2 %12)⊗ (Tr1 %12)

deciding whether a quantum state %12 ∈ D12 is nondiscordant is not
so simple, but there exists a necessary and sufficient criterion

%12 ∈ Dnondsc ⇐⇒ a condition fulfilled

deciding whether a quantum state %12 ∈ D12 is separable is a hard
optimization task, however, there are several necessary but not
sufficient criteria, easy to check (and also interesting)

%12 ∈ Dsep =⇒ a condition fulfilled
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Bipartite systems Criteria of correlations

Criteria of correlations – Quantum case III.: entanglement

criteria by majorization

separable states:
“the whole system is more disordered than any of its subsystems”

%12 ∈ Dsep =⇒ %12 � %1 and %12 � %2

criteria by entropies

entropic reformulation of the above:

%12 ∈ Dsep =⇒ S(%12) ≥ S(%1) and S(%12) ≥ S(%2)

e.g.: von Neumann entropy (Rényi, Tsallis are also suitable)

specially for π12 = |ψ〉〈ψ| ∈ P pure state: S(π12) = 0

π12 ∈ Psep ⇐⇒ S(π1) = 0 and S(π2) = 0

(as we have already seen)
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Bipartite systems Criteria of correlations

Criteria of correlations – Quantum case III.: entanglement

criteria by CHSH (Bell) inequalities

obesrvable of spin-correlation experiment
Ba,a′,b,b′ = aσ ⊗ bσ + aσ ⊗ b′σ + a′σ ⊗ bσ − a′σ ⊗ b′σ

CHSH inequality: (Clauser-Horne-Shimony-Holt)

|Tr(%12Ba,a′,b,b′)| ≤ 2 for all settings ⇐= LHVM

(Local Hidden Variable Model)

for pure states:

%12 ∈ Psep ⇐⇒ |Tr(%12Ba,a′,b,b′)| ≤ 2 for all settings

usually not enough for mixed states:

%12 ∈ Dsep =⇒ |Tr(%12Ba,a′,b,b′)| ≤ 2 for all settings

there are entangled states admitting LHVM for CHSH (Werner)
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Bipartite systems Criteria of correlations

Criteria of correlations – Quantum case III.: entanglement

D12

Dsep

〈W 〉 > 0 〈W 〉 < 0

̺12

ω12

criteria by witnesses

“entanglement witness”:
W ∈ LinH observable,
∀ω12 ∈ Dsep : Tr Wω12 ≥ 0 and
∃%12 ∈ D \ Dsep : Tr W %12 < 0

witnesses can be found
for all entangled states

“clipping around the convex set Dsep”

WCHSH = 2I⊗ I− Ba,a′,b,b′

“CHSH-witness” (not sufficient)

there are also nonlinear criteria,
e.g., nonlinear Bell-inequalities.

%12 ∈ Dsep ⇐⇒ 〈W 〉 ≡ Tr W %12 ≥ 0 for all withesses W

%12 ∈ Dsep =⇒ 〈W 〉 ≡ Tr W %12 ≥ 0 for some withesses W
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Bipartite systems Criteria of correlations

Criteria of correlations – Quantum case III.: entanglement

criteria by positive maps

physics: completely positive maps E : LinH1 → LinH1

preserve the positivity of not only the system (E(%1) ≥ 0),
but also of the sys. together with its environment ((E ⊗ I)(%12) ≥ 0)

positive but not completely positive maps: F : LinH1 → LinH1

%12 ∈ Dsep ⇐⇒
(
F ⊗ I

)
(%12) ≥ 0 for all pos. maps F

%12 ∈ Dsep =⇒
(
F ⊗ I

)
(%12) ≥ 0 for some pos. maps F

examples

positive partial transpose criterion (Peres): F(ω) = ωT

reduction criterion (Horodecki): F(ω) = (Trω)I− ω
many others. . .
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The End

Statement:

Thank you for your attention!

Corollary:

(: Have a nice coffee break! :)
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