

Topological Insulators and Entanglement Spectra

Janos Asboth

Wigner RCP, Hungarian Academy of Sciences

Entanglement Day, Budapest, 2014 September 5

Is the full set of Schmidt coefficients more useful than just the entanglement entropy?

$$\hat{H} = H_{mn} \hat{c}_m^{\dagger} \hat{c}_n = \sum_{\nu} E^{(\nu)} \hat{b}^{(\nu)\dagger} \hat{b}^{(\nu)}$$
$$H_{mn} = \sum_{\nu} E^{(\nu)} v_m^{(\nu)} v_n^{(\nu)*}$$

$$\hat{b}^{(\nu)} = \sum_{n} v_{n}^{(\nu)*} \hat{c}_{n} \qquad \hat{c}_{m} = \sum_{\nu} v_{m}^{(\nu)} \hat{b}^{(\nu)}$$

$$e^{-H_{(\text{ent})mn} \hat{c}_{m}^{\dagger} \hat{c}_{n}}$$

$$\rho_A = \text{Tr}_B |GS\rangle \langle GS| \qquad \qquad \rho_A = \frac{e^{-(\text{cnt})mn^2 \hat{m}^2 \hat{n}}}{\text{Tr}e^{-H_{(\text{ent})mn} \hat{c}_m^{\dagger} \hat{c}_n}}$$

$$C_{mn} = \langle GS | \hat{c}_m^{\dagger} \hat{c}_n | GS \rangle = \sum_{\nu > 0} v_m^{\nu *} v_n^{(\nu)}$$

Correlation matrix Eigenvalues

 λ_j

Entanglement energies, eigvals of H_{ent}

$$\zeta_j = \ln \frac{1 - \lambda_j}{\lambda_j}$$

Obtain Schmidt coefficients considering the full RDM

PHYSICAL REVIEW B 84, 195103 (2011)

Ś

Trace index and spectral flow in the entanglement spectrum of topological insulators

A. Alexandradinata,¹ Taylor L. Hughes,² and B. Andrei Bernevig¹

¹Department of Physics, Princeton University, Princeton, New Jersey 08544, USA ²Department of Physics, University of Illinois, 1110 West Green St, Urbana, Illinois 61801, USA (Received 14 August 2011; published 3 November 2011)

(Developing an idea by Li & Haldane, PRL 2008)

Talk at the Perimeter Institute, full video online

Insulators: low energy states have to be edge states

Insulator: - Band insulator, noninteracting electrons on a lattice

- Strongly correlated (Mott Insulator)

Topological Insulators have robust edge states

- •Magnetic field: electrons cannot penetrate
- •One-way (Chiral) edge states
- Perfect conduction
- Resist localization (Robustness)
- •Number predicted by bulk Chern number

Edge States show up in Edge State Dispersion Relation

•Half BHZ model (Bernevig, Hughes, Zhang, 2006)

$$H(k_x) = \sum_{y=1}^{N} \left[\left(\Delta + \cos k_x \right) \sigma_z + A \sin k_x \sigma_x \right] \otimes |y\rangle \langle y| + \frac{1}{2} \sum_{y=1}^{N-1} \left(\sigma_z - iA\sigma_y \right) \otimes |y+1\rangle \langle y| + \left(\sigma_z + iA\sigma_y \right) \otimes |y\rangle \langle y+1|$$

Edge States exist in Time Reversal Symmetric systems

•BHZ model (Bernevig, Hughes, Zhang, 2006)

 $H_{BHZ}(\mathbf{k}) = \left[(\Delta + \cos k_x + \cos k_y) \sigma_z + A \sin k_y \sigma_y \right] \tau_0 + A \sin k_x \sigma_x \tau_z$

•No scattering allowed between a mode and its time reversed partner (Kramers degeneracy)

Part of the big family tree of Topological Band Insulators

Symmetry				Dimension							
AZ	Т	С	S	1	2	3	4	5	6	7	8
А	0	0	0	0	Z	0	Z	0	Z	0	Z
AIII	0	0	1	Z	0	Z	0	Z	0	Z	0
AI	1	0	0	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z
BDI	1	1	1	Z	0	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	Z	0	0	0	Z	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0	Z
CII	-1	-1	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0	0
С	0	-1	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_2	Z	0	0
СІ	1	-1	1	0	0	Z	0	\mathbb{Z}_2	\mathbb{Z}_{2}	Z	0

Different dimensions, symmetry classes connected by dimensional reduction (Schnyder et al, 2009; Teo & Kane, 2010)

Entanglement Cut in Topological Insulators

Edge modes appear in the entanglement spectrum

- Trivial insulator (C=0):
 - Fully occupied band, little entanglement
 - Adiabatically connected to atomic limit
 - Gap in Entanglement Spectrum

- Chern insulator (C=1):
 - Fully occupied band, why entanglement?
 - No adiabatic connection to atomic limit
 - Gapless Entanglement Spectrum
 - Spectral Flow

Edge modes in the full many-body entanglement spectrum

- Trivial insulator (C=0):
 - Gapped Full Entanglement Spectrum

- Chern insulator (C=1):
 - Gapless Full Entanglement Spectrum
 - Reconstruct Edge mode by counting degeneracies

Trace Index = Tr(C(k)) detects Chern number

Trace Index detects Chern number with disorder

- Alternative to other methods for disorder:
 - Noncommutative Chern number (Prodan, Hughes, Bernevig, PRL 2010)

$$C = 2\pi i \sum_{\alpha} \langle 0, \alpha | P[-i[\hat{x}_1, P], -i[\hat{x}_2, P]] | 0, \alpha \rangle$$

 Scattering Matrix Winding number (Fulga, Hassler, Akhmerov, PRB 2012)

Topological Order and Entanglement

Not the same as Topological Insulators!

Topological Order = Robust Ground state degeneracy on a torus

Example: Toric Code [Kitaev, Ann Phys, 2006]

$$A_v = \prod_{i \in v} \sigma_i^x, \ B_p = \prod_{i \in p} \sigma_i^z.$$
$$H_T = -J_e \sum_v A_v - J_m \sum_p B_p$$

Strongly correlated Ground State

String operators along great circles commute with H

Degeneracy robust against local operations

Long Range Entanglement detects/defines Topological Order

Topological Entanglement Entropy

$$S(A) = \alpha l - \gamma + \dots$$

Numerics using DMRG in [Jiang, Wang, Balents, NatPhys 2012]

Robustness against Stochastic Local Unitary operations

String operators along great circles commute with H

Degeneracy robust against local operations