Observables and initial conditions

from exact rotational hydro solutions
T. Csörgó ${ }^{1}$, I. Barna ${ }^{1}$ and M.I. Nagy ${ }^{\mathbf{1 , 3}}$
${ }^{1}$ MTA Wigner Research Center for Physics, RMKI
3 ELTE University, Budapest, Hungary

New exact rotating hydro solutions Two different family of equations of state

Summary: new rotating solutions Single particle spectra Elliptic and higher order flows

Oscillations of HBT radii
Summary: effects on observables
arXiv:1309.4390v2 PRC 89, 044901 (2014)

+ manuscript in preparation

Motivation: initial angular momentum

Observation of conserved quantities: important Example from L. Cifarelli, L.P. Csernai, H. Stöcker, EPN 43/22 (2012) p. 91

Hydrodynamics: basic equations

$$
\begin{aligned}
\partial_{t} n+\nabla(n \mathbf{v}) & =0, \\
\left(\partial_{t}+\mathbf{v} \nabla\right) \mathbf{v} & =-\frac{\nabla p}{m n}, \\
\partial_{t} \varepsilon+\nabla(\varepsilon \mathbf{v})+p \nabla \mathbf{v} & =0,
\end{aligned}
$$

Basic equations of non-rel hydrodynamics:
Euler equation needs to be modified for lattice QCD EoS
Use basic thermodynamical relations for lack of conserved charge (baryon free region)

$$
\begin{aligned}
\varepsilon+p & =\mu n+T \sigma \\
\mathrm{~d} \varepsilon & =\mu \mathrm{d} n+T \mathrm{~d} \sigma \\
\mathrm{~d} p & =n \mathrm{~d} \mu+\sigma \mathrm{d} T,
\end{aligned}
$$

$$
(\varepsilon+p)\left(\partial_{t}+\mathbf{v} \nabla\right) \mathbf{v}=-\nabla p,
$$

Rewrite for \mathbf{v}, T and (n, or σ)

$$
\begin{aligned}
\partial_{t} n+\nabla(n \mathbf{v}) & =0 \\
{\left[\frac{\mathrm{~d}}{\mathrm{~d} T}(\kappa T)\right]\left(\partial_{t}+\mathbf{v} \nabla\right) T+T \nabla \mathbf{v} } & =0 \\
n m\left(\partial_{t}+\mathbf{v} \nabla\right) \mathbf{v} & =-\nabla p, \\
p & =n T .
\end{aligned}
$$

lattice QCD EoS: modification of the dynamical equations:

$$
\begin{aligned}
\partial_{t} \sigma+\nabla \sigma \mathbf{v} & =0, \\
(1+\kappa)\left[\frac{\mathrm{d}}{\mathrm{~d} T} \frac{\kappa T}{1+\kappa}\right]\left(\partial_{t}+\mathbf{v} \nabla\right) T+T \nabla \mathbf{v} & =0, \\
T \sigma\left(\partial_{t}+\mathbf{v} \nabla\right) \mathbf{v} & =-\nabla p, \\
p & =\frac{T \sigma}{\kappa+1} .
\end{aligned}
$$

Ansatz for rotation and scaling

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{H}+\mathbf{v}_{R} \\
\mathbf{v}_{H} & =\left(\frac{\dot{X}}{X} r_{x}, \frac{\dot{Y}}{Y} r_{y}, \frac{\dot{Z}}{Z} r_{z}\right) \\
\mathbf{v}_{R} & =\omega \times \mathbf{r}=\left(-\omega r_{y}, \omega r_{x}, 0\right),
\end{aligned}
$$

The case without rotation: known self-similar solution T. Cs, hep-ph/00111139
S. V. Akkelin et al, hep-ph/0012127, etc.

Let's try to add rotation!
$\mathcal{D} \equiv \partial_{t}+(\mathbf{v} \nabla)$,
$s_{R}=\frac{r_{x}^{2}+r_{y}^{2}}{R^{2}}$,
$s_{Z}=\frac{r_{z}^{2}}{Z^{2}}$.

First good news: scaling variable remains good \rightarrow a hope to find ellipsoidal rotating solutions!

Common properties of solutions

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{H}+\mathbf{v}_{R}, \\
\mathbf{v}_{H} & =\left(\frac{\dot{X}}{X} r_{x}, \frac{\dot{Y}}{Y} r_{y}, \frac{\dot{Z}}{Z} r_{z}\right), \\
\mathbf{v}_{R} & =\omega \times \mathbf{r}=\left(-\omega r_{y}, \omega r_{x}, 0\right), \\
\omega & =\omega_{0} \frac{R_{0}^{2}}{R^{2}} \\
R & =X=Y \neq Z \\
s & =s_{T}+s_{Z}=\frac{r_{x}^{2}+r_{y}^{2}}{R^{2}}+\frac{r_{Z}^{2}}{Z^{2}}, \\
V & =X Y Z=R^{2} Z
\end{aligned}
$$

From self-similarity
Ellipsoidal ->spheroidal
time dependence of R and ω coupled

Conservation law!

Solutions for conserved particle n

Similar to irrotational case:

Family of self-similar solutions, T profile free
T. Cs, hep-ph/00111139

Rotation leads to increased transverse acceleration!

$$
\begin{aligned}
& n=n_{0} \frac{V_{0}}{V} \nu(s), \\
& T=T_{0}\left(\frac{V_{0}}{V}\right)^{1 / \kappa} \mathcal{T}(s), \\
& \nu(s)=\frac{1}{\mathcal{T}(s)} \exp \left(-\frac{1}{2} \int_{0}^{s} \frac{\mathrm{~d} u}{\mathcal{T}(u)}\right),
\end{aligned}
$$

Role of temperature profiles

1B: conserved n, T dependent e/p

Works only if T is $T(t)$ only
But more general EoS
Similar to
T. Cs. et al,

$$
n=n_{0} \frac{V_{0}}{V} \exp (-s / 2)
$$

hep-ph/0108067

$$
T \equiv T(t)
$$

$$
\frac{d(\kappa T)}{d T} \frac{\dot{T}}{T}+\frac{\dot{V}}{V}=0
$$

Rotation: increases transverse acceleration

Solutions for lattice QCD type EoS

$$
\left.\begin{array}{rl}
\sigma & =\sigma_{0} \frac{V_{0}}{V} \mathcal{S}(s), \\
T & =T_{0}\left(\frac{V_{0}}{V}\right)^{1 / \kappa} \mathcal{T}(s), \\
\mathcal{S}(s) & =\frac{1}{\mathcal{T}(s)} \exp (-s / 2), \\
\sigma & =\sigma_{0} \frac{V_{0}}{V} \exp (-s / 2), \\
R & \equiv T(t), \\
R \ddot{R}-R^{2} \omega^{2}=Z \ddot{Z}=\frac{1}{1+\kappa} . & R \ddot{R}-R^{2} \omega^{2}
\end{array}\right) Z Z \ddot{Z}=\frac{1}{1+\kappa(T)},
$$

Two different class of solutions: $p / e=\operatorname{const}(T)$ or $p / e=f(T)$ Notes: increased acceleration (vs conserved n) Observables calculable if $\sigma \sim \mathrm{n}$ (final) (Landau)

First integrals: Hamiltonian motion

$$
\begin{aligned}
H_{1 A} & =\frac{P_{x}^{2}+P_{y}^{2}+P_{z}^{2}}{2 m}+\kappa T_{0}\left(\frac{X_{0} Y_{0} Z_{0}}{X Y Z}\right)^{1 / \kappa}+\frac{2 m \omega_{0}^{2} R_{0}^{4}}{X^{2}+Y^{2}}, \\
X_{0} & =Y_{0}=R_{0}, \\
\dot{X}_{0} & =\dot{Y}_{0}=\dot{R}_{0} . \\
H_{2 A} & =\frac{P_{x}^{2}+P_{y}^{2}+P_{z}^{2}}{2 m}-\frac{m}{1+\kappa} \ln \left(\frac{X Y Z}{X_{0} Y_{0} Z_{0}}\right)+\frac{2 m \omega_{0}^{2} R_{0}^{4}}{X^{2}+Y^{2}}, \\
X_{0} & =Y_{0}=R_{0}, \\
\dot{X}_{0} & =\dot{Y}_{0}=\dot{R}_{0} .
\end{aligned}
$$

$$
E_{R}=\frac{2 m \omega_{0}^{2} R_{0}^{4}}{X^{2}+Y^{2}}=2 m R^{2} \omega^{2}, \quad I_{z}=\Theta \omega=m R^{2} \omega_{0} \frac{R_{0}^{2}}{R^{2}}=m \omega_{0} R_{0}^{2}
$$

$1 \mathrm{~A}: \mathrm{n}$ is conserved $2 A$: n is not conseerved

Angular momentum conserved Energy in rotation $\rightarrow 0$

Summary so far: rotating solutions

New and rotating
exact solutions of fireball hydro
Also for lattice QCD family of EoS
Now analyzed in detail
(after 53 years)
Important observation:
Rotation leads to stronger radial expansion IQCD EoS leads to stronger radial expansion

Perhaps connected to large radial flows in RHIC and LHC data

Observables:
Next slides

Observables from rotating solutions

$$
\begin{aligned}
n\left(t, \mathbf{r}^{\prime}\right) & =n_{0} \frac{V_{0}}{V} \exp \left(-\frac{r_{x}^{\prime 2}}{2 X^{2}}-\frac{r_{y}^{\prime 2}}{2 Y^{2}}-\frac{r_{z}^{\prime 2}}{2 Z^{2}}\right) \\
\mathbf{v}^{\prime}\left(t, \mathbf{r}^{\prime}\right) & =\left(\frac{\dot{X}}{X} r_{x}^{\prime}, \frac{\dot{Y}}{Y} r_{y}^{\prime}, \frac{\dot{Z}}{Z} r_{z}^{\prime}\right)
\end{aligned}
$$

Note: (r^{\prime}, k^{\prime}) in fireball frame rotated wrt lab frame (r, k)

$$
\begin{aligned}
\ddot{X} X-X^{2} \omega^{2}=\ddot{Y} Y=\ddot{Z} Z-Z^{2} \omega^{2} & =\frac{T}{m} \\
\dot{T} \frac{d}{d T}(\kappa T)+T\left(\frac{\dot{X}}{X}+\frac{\dot{Y}}{Y}+\frac{\dot{Z}}{Z}\right) & =0, \\
X & =Z \equiv R \\
\dot{X} & =\dot{Z} \equiv \dot{R}
\end{aligned}
$$

Note: in this talk, rotation in the (X,Z) impact parameter plane !

Role of EOS on acceleration

$$
\begin{aligned}
& \ddot{X} X-X^{2} \omega^{2}=\ddot{Y} Y=\ddot{Z} Z-Z^{2} \omega^{2}=\frac{1}{1+\kappa} . \\
& \ddot{X} X-X^{2} \omega^{2}=\ddot{Y} Y=\ddot{Z} Z-Z^{2} \omega^{2}=\frac{T}{m},
\end{aligned}
$$

Lattice QCD type Eos is explosive

$$
\begin{aligned}
\theta(t) & =\theta_{0}+\int \mathrm{d} t \omega(t) \\
\omega & =\omega_{0} \frac{R_{0}^{2}}{R^{2}} \\
R & =X=Z \neq Y \\
s & =s_{T}+s_{Z}=\frac{r_{x}^{2}+r_{z}^{2}}{R^{2}}+\frac{r_{y}^{2}}{Y^{2}} \\
V & =X Y Z=R^{2} Y
\end{aligned}
$$

Tilt angle θ integrates rotation in (X, Z) plane: sensitive to EoS!

Single particle spectra

$$
\begin{aligned}
E \frac{d^{3} n}{d \mathbf{k}^{\prime}} & \propto E \exp \left(-\frac{k_{x}^{\prime 2}}{2 m T_{x}^{\prime}}-\frac{k_{y}^{\prime 2}}{2 m T_{y}^{\prime}}-\frac{k_{z}^{2}}{2 m T_{z}^{\prime}}\right) \\
T_{x}^{\prime} & =T_{f}+m\left(\dot{X}_{f}^{2}+\omega_{f}^{2} Z_{f}^{2}\right) \\
T_{y}^{\prime} & =T_{f}+m \dot{Y}_{f}^{2} \\
T_{z}^{\prime} & =T_{f}+m\left(\dot{Z}_{f}^{2}+\omega_{f}^{2} X_{f}^{2}\right)
\end{aligned}
$$

In the rest frame of the fireball:

Rotation increases effective temperatures both in the longitudinal and impact parameter direction
in addition to Hubble flows

Directed, elliptic and other flows

From the single particle spectra
\rightarrow flow coefficents v_{n}

$$
\frac{d^{3} n}{d k_{z} k_{t} d k_{t} d \phi}=\frac{d^{2} n}{2 \pi d k_{z} k_{t} d k_{t}}\left[1+2 \sum_{n=1}^{\infty} v_{n} \cos (n \phi)\right]
$$

$$
\begin{aligned}
v_{1} & =0 \\
v_{2} & =\frac{I_{1}(w)}{I_{0}(w)} \\
v_{3} & =0, \ldots \\
v_{2 n} & =\frac{I_{n}(w)}{I_{0}(w)}
\end{aligned}
$$

Note:
model is fully analytic
As of now, only $X=Z=R(t)$ spheroidal solutions are found
\rightarrow vanishing odd order flows
See next talk for fluctuations

Reminder: Universal w scaling of $\mathbf{v}_{\mathbf{2}}$

$$
\frac{I_{1}(w)}{I_{0}(w)}
$$

Rotation does not change v2 scaling, but it modifies radial flow

Black line: Buda-Lund prediction from 2003 nucl-th/0310040

Comparision with data: nucl-th/0512078 Note: v2 data depend on particle type, centrality, colliding energy, rapidity, pt

Details of universal w scaling of $\mathbf{v}_{\mathbf{2}}$

Csörgő, T.

HBT radfi for rotating spheroids

Diagonal Gaussians in natural frame

$$
\begin{aligned}
C\left(\mathbf{K}^{\prime}, \mathbf{q}^{\prime}\right) & =1+\lambda \exp \left(-q_{x}^{\prime 2} R_{x}^{\prime 2}-q_{y}^{\prime 2} R_{y}^{\prime 2}-q_{z}^{\prime 2} R_{z}^{\prime 2}\right), \\
\mathbf{K}^{\prime} & =\mathbf{K}_{12}^{\prime}=0.5\left(\mathbf{k}_{1}^{\prime}+\mathbf{k}_{2}^{\prime}\right),
\end{aligned}
$$

$$
\begin{aligned}
R_{x}^{\prime-2} & =X_{f}^{-2}\left(1+\frac{m}{T_{f}}\left(\dot{X}_{f}^{2}+Z_{f}^{2} \omega_{f}^{2}\right)\right), \\
R_{y}^{\prime-2} & =Y_{f}^{-2}\left(1+\frac{m}{T_{f}} \dot{Y}_{f}^{2}\right), \\
R_{z}^{\prime-2} & =Z_{f}^{-2}\left(1+\frac{m}{T_{f}}\left(\dot{Z}_{f}^{2}+X_{f}^{2} \omega_{f}^{2}\right)\right) .
\end{aligned}
$$

New terms with blue
\rightarrow Rotation decreases HBT radii similarly to Hubble flow.

HBT radfi in the lab frame

$$
\begin{aligned}
C_{2}(\mathbf{K}, \mathbf{q}) & =1+\lambda \exp \left(-\sum_{i, j=\mathrm{s}, \mathrm{o}, \mathrm{l}} q_{i} q_{j} R_{i j}^{2}\right) \\
R_{\mathrm{s}}^{2} & =R_{y}^{\prime 2} \cos ^{2} \phi+R_{x}^{2} \sin ^{2} \phi \\
R_{\mathrm{o}}^{2} & =R_{x}^{2} \cos ^{2} \phi+R_{y}^{\prime 2} \sin ^{2} \phi+\beta_{t}^{2} \Delta t^{2}
\end{aligned}
$$

$$
\begin{aligned}
R_{1}^{2} & =R_{z}^{\prime 2} \cos ^{2} \theta+R_{x}^{\prime 2} \sin ^{2} \theta+\beta_{1}^{2} \Delta t^{2}, \\
R_{\mathrm{ol}}^{2} & =\left(R_{x}^{\prime 2}-R_{z}^{\prime 2}\right) \cos \theta \sin \theta \cos \phi+\beta_{t} \beta_{1} \Delta t^{2}, \\
R_{\mathrm{os}}^{2} & =\left(R_{x}^{2}-R_{y}^{\prime 2}\right) \cos \phi \sin \phi, \\
R_{\mathrm{sl}}^{2} & =\left(R_{x}^{\prime 2}-R_{z}^{\prime 2}\right) \cos \theta \sin \theta \sin \phi,
\end{aligned}
$$

$$
R_{x}^{2}=R_{x}^{\prime 2} \cos ^{2} \theta+R_{z}^{\prime 2} \sin ^{2} \theta
$$

HBT radif in the lab frame

$$
\begin{aligned}
& C_{2}(\mathbf{K}, \mathbf{q})=1+\lambda \exp \left(-\sum_{i, j=\mathrm{s}, \mathrm{o}, \mathrm{l}} q_{i} q_{j} R_{i j}^{2}\right), \\
& \begin{array}{l}
R_{\mathrm{s}}^{2}=R_{y}^{\prime 2} \cos \\
R_{\mathrm{o}}^{2}=R_{x}^{2} \cos ^{2}
\end{array} C_{2}(\mathbf{K}, \mathbf{q})=1+\lambda \exp \left(-\sum_{i, j=\mathrm{s}, \mathrm{o}, 1} q_{i} q_{j} R_{i j}^{2}\right), \\
& R_{1}^{2}=R_{z}^{\prime 2} \cos ^{2} \theta+ \\
& R_{\mathrm{ol}}^{2}=\left(R_{x}^{\prime 2}-R_{z}^{\prime 2}\right) \\
& R_{\mathrm{os}}^{2}=\left(R_{x}^{2}-R_{y}^{2}\right) \\
& R_{\mathrm{sl}}^{2}=\left(R_{x}^{\prime 2}-R_{z}^{\prime 2}\right) \\
& R_{x}^{2}=R_{x}^{\prime 2} \cos ^{2} \theta+I \\
& R_{\mathrm{s}}^{2}=R_{y}^{2} \cos ^{2} \phi+R_{x}^{2} \sin ^{2} \phi, \\
& R_{\mathrm{o}}^{2}=R_{x}^{2} \cos ^{2} \phi+R_{y}^{\prime 2} \sin ^{2} \phi+\beta_{t}^{2} \Delta t^{2} \text {, } \\
& R_{1}^{2}=R_{z}^{\prime 2} \cos ^{2} \theta+R_{x}^{\prime 2} \sin ^{2} \theta+\beta_{1}^{2} \Delta t^{2}, \\
& R_{\mathrm{ol}}^{2}=0+\beta_{t} \beta_{1} \Delta t^{2}, \\
& R_{\mathrm{os}}^{2}=\left(R_{x}^{2}-R_{y}^{\prime 2}\right) \cos \phi \sin \phi, \\
& R_{\mathrm{sl}}^{2}=0 .
\end{aligned}
$$

But spheriodal symmetry of the solution
Makes several cross terms vanish \rightarrow need for ellipsoidal solutions

Qualitatively rotation and flow similar

But need more time dependent calculations
and less academic studies (relativistic solutions)

Summary

Observables calculated

Effects of rotation and flow

 Combine and have same mass dependenceSpectra: slope increases v_{2} : universal w scaling remains valid HBT radii:
Decrease with mass intensifies
Even for spherical expansions: v_{2} from rotation.

Picture: vulcano How to detect the rotation? Next step: penetrating probes

Summary

Observables calculated

Effects of rotation and flow

 Combine and have same mass dependenceSpectra: slope increases
v_{2} : universal w scaling remains valid HBT radii:
Decrease with mass intensifies
Even for spherical expansions: v_{2} from rotation.

Picture: vulcano How to detect the rotation? Next step: penetrating probes

