

Rács QCD GPU-kon

Katz Sándor

ELTE, Elméleti Fizikai Tanszék

GPU nap, RMKI, 2010. június 4.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < @

Introduction	The ELTE GPU cluster	QCD on GPU's	Physics results	Summary
Outline				

- 2 The ELTE GPU cluster
- 3 QCD on GPU's
- 4 Physics results

크

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Chromodynamics(QCD) is the theory of the strong interaction it confines quarks and gluons inside the proton

QCD is similar to Quantum Electrodynamics with more complicated symmetry (SU(3) instead of U(1)) quarks have three "colors"

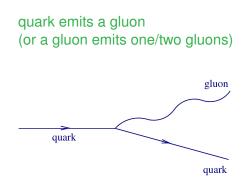
At high temperatures hadrons break up and the quark-gluon plasma is formed

Some interesting questions

At what temperature does the transition happen? What is the equation of state of the quark-gluon plasma? What happens at non-zero baryon density?

A B F A B F

Basic interaction(s) in QCD

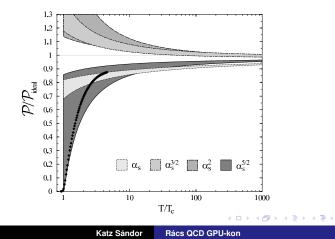


at LEP the process can be clearly seen (\approx 10% of QCD processes)

we see jets and varify the underlying equations: asymptotic freedom we do not see free quarks or gluons: confinement phenomena

QCD: need for a systematic non-perturbative method

in some cases: good perturbative convergence; in other cases: bad pressure at high temperatures converges at $T=10^{300}$ MeV



systematic non-perturbative approach (numerical solution):

quantum fields on the lattice

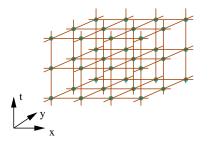
quantum theory: path integral formulation with $S = E_{kin} - E_{pot}$

quantum mechanics: for all possible paths add exp(iS) quantum fields: for all possible field configurations add exp(iS)

Euclidean space-time (t= $i\tau$): exp(-S) sum of Boltzmann factors

we do not have infinitely large computers \Rightarrow two consequences

- a. put it on a space-time grid (proper approach: asymptotic freedom) formally: four-dimensional statistical system
- b. finite size of the system (can be also controlled)
- \Rightarrow stochastic approach, with reasonable spacing/size: solvable



fine lattice to resolve the structure of the proton (≤ 0.1 fm) few fm size is needed 50-100 points in 'xyzt' directions $a \Rightarrow a/2$ means 100-200×CPU mathematically 10⁹ dimensional integrals

advanced techniques, good balance and several Tflops are needed

< □ > < □ > < □ > < □ >

The GPU cluster at ELTE

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Special hardware:

graphics cards (GPU's) \rightarrow 120 GFlop sustained /card 128 nodes / 256 GPU's \rightarrow \approx 30 TFlop ideal for lattice calculations

128 nodes (160 by the end of July):

intel corei7 CPU, 2.67 GHz 12 Gbytes RAM 500 Gbytes HDD 2x NVIDIA gtx275

Interconnect

40 Gbit/s infiniband 36 port switches (32 nodes)

Network performance (full duplex)

 $\approx\!\!80$ Gbit/s between two cards/node $\approx\!\!55$ Gbit/s between nodes latency: $\approx\!3\mu s$

A (1) > A (2) > A

Previous experience with clusters

1998

32 node PC cluster (one of the first for lattice) AMD K6/2 300MHz CPUs 3dNow MMX instructions utilized later extended to 96 nodes

2001

128 node PC cluster with gigabit Ethernet SSE instructions

First machine to hit \$1/Mflops threshold

Since 2005

GPU solutions (first for lattice) OpenGL (Cg) then CUDA several GPU generations: 7800-7900GTX, 8800GTX, GTX260-275 (GTX480 is coming) We need to solve

$$Dx = b$$
,

where D is the discretized Dirac-operator, a sparse matrix

Iterative solution, necessary ingredients

Dx matrix-vector multiplication y = ax + b, etc. linear algebra with complex coefficients $r = x \cdot y$ scalar product \rightarrow global sums

host \leftrightarrow device transfer "slow" \rightarrow entire solver on the GPU

- 1. Upload *D* and *b* to the device
- 2. Solve on the GPU
- 3. Download x

Ξ.

D connects neighboring sites, its "elements" are SU(3) matrices. E.g. for staggered fermions:

$$(D\Psi)_{x} = m_{q}\Psi_{x} + \frac{1}{2}\sum_{\mu=1..4}\alpha_{x\mu}\left(U_{x\mu}\Psi_{x+\hat{\mu}} - U^{\dagger}_{(x-\mu)\mu}\Psi_{x-\hat{\mu}}\right),$$

where $\alpha_{x\mu} = \pm 1$ and $U_{x\mu}$ are SU(3) matrices.

Do not store matrix elements of *D* in GPU memory, but instead store Ψ_{χ} and $U_{\chi\mu}$ and pointers to neighbors Each U is a 3x3 complex matrix \rightarrow 18 real numbers Unitarity: only 8 parameters would be needed (possible, but unstable) optimization: store only 2 rows of U, third can be easily reconstructed reduces the total required memory and # of memory accesses

- one thread per lattice site
- store $U_{x\mu}$, Ψ_x and neighbor tables in registers and shared memory both are needed to allow large enough block size
- block size is limited by register and shared memory usage typically set to 64 constraint on lattice extensions \rightarrow can be avoided by padding
- grid size is determined by lattice size
 can accommodate up to 32⁴ lattices on a single GPU
- global sums by parallel reduction only down to one number/block, rest is done on CPU

Introduction	The ELTE GPU cluster	QCD on GPU's	Physics results	Summary
Paralleliz	ation			

-D is local \rightarrow split up lattice to smaller subvolumes

- only Ψ needs to be communicated and only on the surface required communication bandwidth is \approx 2 orders of magnitude smaller than the memory bandwidth \rightarrow still O(10) Gbit/s is needed
- asynchronous device-host transfers \rightarrow part of the communication can be hidden by computations
- MPI is used for inter-process communication one process per GPU alternatively openMP could also be used for the two cards/node
- communication loss is \leq 30% for up to 4 GPU-s on a 24³ · 64 lattice

Introduction	The ELTE GPU cluster	QCD on GPU's	Physics results	Summary
Precision				

most current GPU's have limited double precision support What if we need the solution in double precision?

Multiprecision solvers

most computations in single (32bit) precision few iterations in double precision result is correct up to double precision even half (16bit) precision can be used cannot be used without limits as # of iterations increases

- 1. Solve Dx = b in single precision.
- 2. Evaluate Dx b in double precision

Dx - b = r

where $|r|/|b| < 10^{-6}$

3. Solve again for rsolution of $Dx' = r \rightarrow Dx' - r = r'$ with $|r'|/|r| < 10^{-6}$

4.Combine the results:

D(x - x') - b = -r', so x - x' is accurate up to 10^{-12}

副 と く ヨ と く ヨ と

э

Introduction	The ELTE GPU cluster	QCD on GPU's	Physics results	Summary
Perform	lance			

One node performance

best on large lattices (contrary to CPU codes) staggered fermions: up to 90 Gflops Wilson fermions: up to 120 Gflops

Parallel performance

so far up to 4 GPU's (soon to be extended to 64 GPU's) \approx 300 GFlop can be reached on 4 GPU's (two nodes)

Comparison:

1 BlueGene/P rack with highly optimized code: \approx 5 Tflops costs around \$1 million assuming scaling: equivalent to 64 GPU's, 32 PC's !

All numbers are sustained performances, peak is much higher. 🝙 🧓

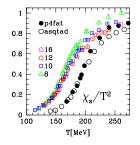
chiral condensate

QCD on GPU's

Transition temperatures for various observables

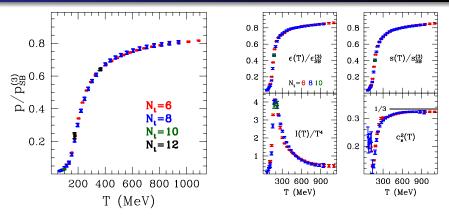
Ъb p4fat 0.8 Oasqtad 0.6 $\Delta_{\mathbf{l},\mathbf{s}}$ 0.4 12 10 0.2 ^8 0 150 200 250 T[MeV]

quark number susceptibility



	$\chi_{ar\psi\psi}/T^4$	$\chi_{ar\psi\psi}/{\it T}^2$	$\chi_{ar\psi\psi}$	$\Delta_{l,s}$	L	χ_s
WB'09	146(2)(3)	152(3)(3)	157(3)(3)	155(2)(3)	170(4)(3)	169(3)(3)
WB'06	151(3)(3)	-	-	-	176(3)(4)	175(2)(4)
BBCR	-	192(4)(7)	-	-	192(4)(7)	-

Equation of state

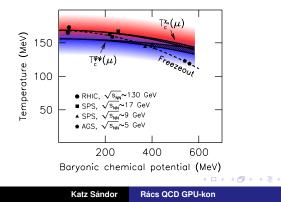


- Two lattice spacings ($N_t = 6, 8$) + checkpoints ($N_t = 10, 12$)
- nice scaling
- everything is derived from the pressure

The QCD phase diagram

non-zero chemical potential \rightarrow sign problem Monte-Carlo based on importance sampling fails

We can still calculate derivatives at $\mu = 0$ Phase diagram for relatively small μ can be given



Introduction	The ELTE GPU cluster	QCD on GPU's	Physics results	Summary
Summa	ſy			

- GPU's are optimal for lattice QCD calculations
- the 256 GPU cluster at ELTE has \approx 30 Tflops sustained performance
- CUDA implementation with efficient parallelization is possible
- Multiprecision solvers reduce the need for double precision operations
- Large scale simulations on GPU's produce important physics results