
Segregating inclusive, prompt and non-prompt 

production of J/𝜓 at the LHC energies using 

machine learning

Suraj Prasad

Indian Institute of Technology Indore, India

Email: Suraj.Prasad@cern.ch

Based On:

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 



19-04-2024 Suraj Prasad | IIT Indore 2

Outline

• Introduction

• Quarkonia

• Topological production of  J/𝜓

• Inputs to the machine

• Model parameters

• Model performance

• Results

• Summary 



19-04-2024 Suraj Prasad | IIT Indore 3

Outline

Big Questions:
 What is the universe made of?

 How does it work?
How did it evolve?
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Constituents of Matter

[1] R. Sahoo, “Relativistic Kinematics”, [arXiv:1604.02651 [nucl-ex]] 

• Energy is related to wavelength by de Broglie’s 
formula: 𝑝 = ℎ/𝜆

• To probe inside smaller objects, we need higher 
energy



[1] R. Sahoo, AAPPS Bull. 29, 16 (2019).
[2] U. Heinz, Int. J. Mod. Phys. A 30, 1530011 (2015).

Space-time evolution in Collider Experiments
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Space-time evolution in Collider Experiments

https://particlesandfriends.wordpress.com/2016/10/14/evolution-of-collisions-and-qgp/

• There are two possible scenarios of the space-time evolution in 

collider experiments depending upon the system size and the 

collision energy

• One assumes the formation of a deconfined thermalised state 

of the deconfined quarks and gluons known as the quark-gluon 

plasma (QGP) led by the pre-equilibrium phase and followed by 

a mixed phase and hadron gas phase (larger system size and 

denser partonic medium)

• Another scenario involves the prehadronic phase followed by 

the hadron gas phase (small collision scenario)



• Transverse Momentum, 𝑝𝑇 = 𝑝𝑥
2 + 𝑝𝑦

2

• Azimuthal Angle, 𝜙 = tan−1 𝑝𝑦

𝑝𝑥

• Polar angle, 𝜃 = tan−1 𝑝𝑇

𝑝𝑧

• Rapidity, 𝑦 =
1

2
ln

𝐸+𝑝𝑍

𝐸−𝑝𝑧

• Pseudo-rapidity, 𝜂 = − ln tan
𝜃

2

• Every produced particle is represented in terms 

of their (𝑝T, 𝜂, 𝜙)

[1] R. Sahoo, “Relativistic Kinematics”, [arXiv:1604.02651 [nucl-ex]] 

Coordinate System 
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Quarkonia

• Quarkonia is a bound state of heavy quark and antiquark pairs

• Due to its heavy mass, quarkonia studies in QGP are important 

as it experiences the whole medium evolution

• Serve as the testing ground for QCD

• Charmonia (𝑐 ҧ𝑐) and bottomonia (bതb)

• Suppression increased towards higher 𝑁part  due to the denser partonic 

medium: more screening

ALICE, arXiv:2210.08893

𝑅AA =
𝑑2𝑁AA/𝑑𝜂d𝑝T

𝑁coll  𝑑2𝑁pp/𝑑𝜂𝑑𝑝T

https://twiki.cern.ch/twiki/bin/view/ReteQuarkonii/ReteQuarkonii
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Topological production of J/𝜓 

• J/ψ meson: Vector charmonium with lightest mass (3.096 GeV/𝑐2)

• In experiments, dileptonic channels are used to reconstruct J/𝜓. (J/𝜓 → 𝜇+ + 𝜇− or J/𝜓 → 𝑒+ + 𝑒−)

• Prompt Production: Direct production/ decay of heavier charmonium states

• Non-prompt Production: Products of beauty hadron weak decays (Opportunity to study b-hadron)

• Prompt and non-prompt J/𝜓 are topologically different thus they both show different values of suppression

Eur. Phys. J. C (2018) 78:762
S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 
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Experimental Procedure

• In experiments, the invariant mass of dilepton pairs are estimated: 𝑀𝑒𝑒 = 𝐸1 + 𝐸2
2 − |𝑝1 + 𝑝2| 2

• Using the vertexing information from the detectors, the pseudoproper decay length (𝑐𝜏) is estimated:

• One performs a simultaneous fit to the invariant mass signal and pseudoproper decay length to obtain fraction of 

nonprompt yield (𝑓B)

• For the fitting, the PDFs for prompt and non-prompt are usually taken from MC simulations

ALICE, JHEP 03 (2022) 190
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Machine Learning

What it needs?

• Big data

• Smart algorithm (BDT, DNN, GNN etc.)

• Knowledge from data

• Tune the parameters (Optimise the model)

• Predict!!

“Machine learning is the field of study that gives computers 
the ability to learn without being explicitly programmed.”

-Arthur Samuel, 1959
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Preparing the inputs

• PYTHIA8 is used as the MC generator to generate 20 billion minimum bias 

events for pp collisions at 𝑠 = 13 TeV using 4C-tune

• The coordinates of the primary vertex are randomised following a Gaussian 

distribution

•  J/𝜓 → 𝜇+ + 𝜇− channel is used to reconstruct invariant mass (𝑚𝜇𝜇 ), 

transverse momentum (𝑝𝑇,𝜇𝜇), pseudorapidity (𝜂𝜇𝜇) and rapidity (𝑦𝜇𝜇) of 

the dimuons

• Pseudoproper decay length (𝑐𝜏) of the reconstructed dimuon pairs along 

with 𝑚𝜇𝜇, 𝑝𝑇,𝜇𝜇, and 𝜂𝜇𝜇 are taken as inputs

𝐿 = Ԧ𝑆 − 𝑉

𝑉 = Primary Vertex
Ԧ𝑆 = Reconstructed J/𝜓 decay vertex

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 



• Background : Prompt : Non-prompt = 20 : 10 : 1

• Classification models required to be trained on similar number of training 

instances → oversampling of data is done

• Dataset for Training : Testing : Validation = 81 : 10 : 9   

•  Parameters are chosen through a grid search method (Making an array of all 

possible parameters and training to find the parameter values for minimum loss)

• Loss saturates around 25 trees and 

45 trees for XGB and LGBM

• Training and validation curves are on 

top of each other → No 

overfitting/underfitting 
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Model parameters

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 



• Confusion Matrix talks about the mispredictions given by the model for each class

• Both XGB and LGBM perfectly separates the inclusive J/𝜓  from the uncorrelated 

background pairs

• Both models mispredict 2% of prompt J/𝜓 as the non-prompt → Raises non-prompt yield

• Importance score tells how 

important a feature for a decision 

making of the models

• The importance score of invariant 

mass of dimuons is highest for both 

the models

• 𝑐𝜏 contributes to decision making of 

the models significantly
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Model performance

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 



• Both XGB and LGBM give accurate predictions for 𝑝T-spectra for inclusive and prompt-J/𝜓 both in mid and forward 

rapidity in pp collisions at s = 13 TeV and 7 TeV

• The ML models overpredict the non-prompt J/𝜓 throughout the 𝑝T spectra for both the collision energy and rapidity 

→ Expected from the confusion matrix
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Results: Transverse momentum spectra

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 



• 𝑓B  is the fraction of the non-prompt production (B-

hadron decays)

• 𝑓B  increases with increase in 𝑝T  → The b-hadron 

production is favoured towards higher 𝑝T compared to 

low 𝑝T

• PYTHIA8 underestimates the experimental data 

following the similar trend

• Both XGB and LGBM overestimate PYTHIA8 

• As this method does not require fitting, thus it can be 

used in both low and high statistics without affecting its 

efficiency
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Results: Fraction of non-prompt J/𝜓 yield

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 



• Both XGB and LGBM give accurate 

predictions for rapidity spectra for 

inclusive and prompt-J/ 𝜓  in pp 

collisions at s = 13 TeV and 7 

TeV

• The ML models overpredict the 

non-prompt J/𝜓  throughout 

rapidity region for both the 

collision energies
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Results: Rapidity spectra

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 



• The normalised yield for inclusive 

J/𝜓  from PYTHIA8 matches 

qualitatively with the ALICE results

• Both XGB and LGBM reproduce the 

PYTHIA8 results very precisely for 

inclusive and prompt J/𝜓

• The predictions for non-prompt J/𝜓  

from both XGB and LGBM matches 

PYTHIA8 findings within 10% 

uncertainty
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Results: Normalised J/𝜓 yield

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 
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Summary

• We have used BDT based ML models such as XGBoost and LGBM to segregate the prompt, non-prompt 

and inclusive J/𝜓 production in pp collisions at 𝑠 = 13 TeV

• The models use the parameters, such as, pseudo-proper decay length (𝑐𝜏), invariant mass (𝑚𝜇𝜇), 

transverse momentum (𝑝𝑇,𝜇𝜇), pseudorapidity (𝜂𝜇𝜇) of the dimuons as the input, which are accessible in 

the experiments

• The model almost achieves 99% overall accuracy

• The estimations for the prompt and inclusive J/𝜓 from the ML models match with the PYTHIA8 for the 

inclusive and prompt J/𝜓 

• Using this models, track label identification is possible, and it avoids the necessity of fitting of spectra

• The model is expected to work throughout the energy regime from RHIC to LHC and in heavy-ion collisions

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024) 
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Strong Interaction

• Unlike QED, in QCD gluons have a color charge, which permits gluon-

gluon interaction

• Color charges can’t freely exist: Color confinement

• At high energies, 𝛼𝑠 becomes smaller: Asymptotic freedom 

Obertelli, A., Sagawa, H. (2021). Nuclear Physics and Standard Model of Elementary Particles. In: Modern Nuclear 
Physics. UNITEXT for Physics. Springer, Singapore



•Trees are structures that take recursive decisions

•Built in a top-down approach

•Root node: The starting point

   Internal nodes: further decision points

  Leaf nodes: End points (target class or values)

•Criteria of splitting: 

 Classification: Minimise the node impurity

 Regression: Minimise the MSE, MAE

•Splitting continues till a preset (max_depth)

•Boosting: Building an additive forward staged model by

combining the outcomes of all previous ones

•Boosting compensates the shortcomings

•Shortcomings are identified as the gradients

MSE: Mean Squared Error
MAE: Mean Absolute Error

• Light Gradient Boosting Machine (LGBM): 

Leafwise splitting of tree, low memory use and 

supports parallel boosting

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/stable/

• Extreme Gradient Boosting (XGB): Advance version of Gradient Boosting that supports parallel tree boosting → Faster
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Gradient Boosting Machine

https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/stable/
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Gradient Boosting Machine

• Root Node: It is the topmost node in the tree, which represents 
the complete dataset. It is the starting point of the decision-
making process. 

• Decision/Internal Node: A node that symbolizes a choice 
regarding an input feature. Branching off of internal nodes 
connects them to leaf nodes or other internal nodes. 

• Leaf/Terminal Node: A node without any child nodes that 
indicates a class label or a numerical value 

• Two Methods for making an ensemble of decision trees: Boosting and 
bagging

• Bagging method builds models in parallel using a random subset of data 
(sampling with replacement) and aggregates predictions of all models

• Boosting method builds models in sequence using the whole data, with 
each model improving on the previous model’s error

• Gradient Boosting: Gradient descent + boosting
• Gradient descent: Minima finding algorithm
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XGBoost LightGBM

•  Extreme Gradient Boosting

• Faster and memory efficient compared to GBDT

• Supports CPU parallelization

• Light Gradient Boosting Machine

• Faster and very light in memory compared to GBDT and 
XGB

• Supports CPU and GPU parallelization
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Corrections in the Predictions
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