Segregating inclusive, prompt and non-prompt production of J / ψ at the LHC energies using machine learning

Suraj Prasad
Indian Institute of Technology Indore, India
Email: Suraj.Prasad@cern.ch

Based On:
S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

Outline

- Introduction
- Quarkonia
- Topological production of J / ψ
- Inputs to the machine
- Model parameters
- Model performance
- Results
- Summary

Outline

- Introduction
- Quarkonia

Big Questions:
 What is the universe made of?
 How does it work?
 How did it evolve?

- iviocier pertormance
- Results
- Summary

Constituents of Matter

Space-time evolution in Collider Experiments

Nature
[1] R. Sahoo, AAPPS Bull. 29, 16 (2019).
[2] U. Heinz, Int. J. Mod. Phys. A 30, 1530011 (2015)

Experiment

Space-time evolution in Collider Experiments

https://particlesandfriends.wordpress.com/2016/10/14/evolution-of-collisions-and-qgp/

- There are two possible scenarios of the space-time evolution in collider experiments depending upon the system size and the collision energy
- One assumes the formation of a deconfined thermalised state of the deconfined quarks and gluons known as the quark-gluon plasma (QGP) led by the pre-equilibrium phase and followed by a mixed phase and hadron gas phase (larger system size and denser partonic medium)
- Another scenario involves the prehadronic phase followed by the hadron gas phase (small collision scenario)

Coordinate System

- Transverse Momentum, $p_{T}=\sqrt{p_{x}^{2}+p_{y}^{2}}$
- Azimuthal Angle, $\phi=\tan ^{-1}\left(\frac{p_{y}}{p_{x}}\right)$
- Polar angle, $\theta=\tan ^{-1}\left(\frac{p_{T}}{p_{z}}\right)$

- Pseudo-rapidity, $\eta=-\ln \left(\tan \frac{\theta}{2}\right)$
- Every produced particle is represented in terms of their $\left(p_{\mathrm{T}}, \eta, \phi\right)$

Quarkonia

- Quarkonia is a bound state of heavy quark and antiquark pairs
- Due to its heavy mass, quarkonia studies in QGP are important as it experiences the whole medium evolution
- Serve as the testing ground for QCD

$$
R_{\mathrm{AA}}=\frac{d^{2} N_{\mathrm{AA}} / d \eta \mathrm{~d} p_{\mathrm{T}}}{\left\langle N_{\mathrm{coll}}\right\rangle d^{2} N_{\mathrm{pp}} / d \eta d p_{\mathrm{T}}}
$$

- Charmonia ($c \bar{c}$) and bottomonia (b $\overline{\mathrm{b}})$
- Suppression increased towards higher $\left\langle N_{\text {part }}\right\rangle$ due to the denser partonic medium: more screening
https://twiki.cern.ch/twiki/bin/view/ReteQuarkonii/ReteQuarkonii

Topological production of J $/ \psi$

- J/ Ψ meson: Vector charmonium with lightest mass $\left(3.096 \mathrm{GeV} / c^{2}\right)$
- In experiments, dileptonic channels are used to reconstruct $\mathrm{J} / \psi .\left(\mathrm{J} / \psi \rightarrow \mu^{+}+\mu^{-}\right.$or $\left.\mathrm{J} / \psi \rightarrow e^{+}+e^{-}\right)$
- Prompt Production: Direct production/ decay of heavier charmonium states
- Non-prompt Production: Products of beauty hadron weak decays (Opportunity to study b-hadron)
- Prompt and non-prompt J/ ψ are topologically different thus they both show different values of suppression

Experimental Procedure

- In experiments, the invariant mass of dilepton pairs are estimated: $M_{e e}=\sqrt{\left(E_{1}+E_{2}\right)^{2}-\left(\left|\overrightarrow{p_{1}}+\overrightarrow{p_{2}}\right|\right)^{2}}$
- Using the vertexing information from the detectors, the pseudoproper decay length $(c \tau)$ is estimated: $c \tau=\frac{c m_{\mathrm{J} / \psi} \vec{L} \cdot \overrightarrow{p_{\mathrm{T}}}}{\left|\overrightarrow{p_{\mathrm{T}}}\right|^{2}}$
- One performs a simultaneous fit to the invariant mass signal and pseudoproper decay length to obtain fraction of nonprompt yield (f_{B})
- For the fitting, the PDFs for prompt and non-prompt are usually taken from MC simulations

19-04-2024

Suraj Prasad | IIT Indore

Machine Learning

"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed."
-Arthur Samuel, 1959

SUPERVISED LEARNING

UNSUPERVISED REINFORCEMENT LEARNING REINFORCEM
LEARNING

What it needs?

- Big data
- Smart algorithm (BDT, DNN, GNN etc.)
- Knowledge from data
- Tune the parameters (Optimise the model)
- Predict!!

Preparing the inputs

- PYTHIA8 is used as the MC generator to generate 20 billion minimum bias events for pp collisions at $\sqrt{s}=13 \mathrm{TeV}$ using 4C-tune
- The coordinates of the primary vertex are randomised following a Gaussian distribution
- $\mathrm{J} / \psi \rightarrow \mu^{+}+\mu^{-}$channel is used to reconstruct invariant mass $\left(m_{\mu \mu}\right)$, transverse momentum ($p_{T, \mu \mu}$), pseudorapidity $\left(\eta_{\mu \mu}\right)$ and rapidity $\left(y_{\mu \mu}\right)$ of the dimuons
- Pseudoproper decay length $(c \tau)$ of the reconstructed dimuon pairs along with $m_{\mu \mu}, p_{T, \mu \mu}$, and $\eta_{\mu \mu}$ are taken as inputs

$$
c \tau=\frac{c m_{\mathrm{J} / \psi} \vec{L} \cdot \overrightarrow{p_{\mathrm{T}}}}{\left|\overrightarrow{p_{\mathrm{T}}}\right|^{2}}
$$

$\vec{V}=$ Primary Vertex
$\vec{S}=$ Reconstructed J / ψ decay vertex

$$
S_{x}=\frac{\left(t_{1}+x_{1} m_{1} / p_{x, 1}\right)-\left(t_{2}+x_{2} m_{2} / p_{x, 2}\right)}{m_{1} / p_{x, 1}-m_{2} / p_{x, 2}}
$$

Model parameters

- Background : Prompt : Non-prompt = 20 : $10: 1$
- Classification models required to be trained on similar number of training instances \rightarrow oversampling of data is done
- Dataset for Training : Testing : Validation = 81:10:9
- Parameters are chosen through a grid search method (Making an array of all possible parameters and training to find the parameter values for minimum loss)

XGB

	XGB	LGBM
Learning rate	0.3	0.1
Sub-sample	1.0	1.0
No. of trees	60	60
Maximum depth	3	3
Objective	softmax	softmax
Metric	mlogloss	multilogloss

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

- Loss saturates around 25 trees and 45 trees for XGB and LGBM
- Training and validation curves are on top of each other \rightarrow No overfitting/underfitting

Model performance

- Confusion Matrix talks about the mispredictions given by the model for each class
- Both XGB and LGBM perfectly separates the inclusive J / ψ from the uncorrelated background pairs
- Both models mispredict 2% of prompt J / ψ as the non-prompt \rightarrow Raises non-prompt yield
S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

Results: Transverse momentum spectra

- Both XGB and LGBM give accurate predictions for p_{T}-spectra for inclusive and prompt-J/ ψ both in mid and forward rapidity in pp collisions at $\sqrt{\mathrm{s}}=13 \mathrm{TeV}$ and 7 TeV
S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)
- The ML models overpredict the non-prompt J / ψ throughout the p_{T} spectra for both the collision energy and rapidity
\rightarrow Expected from the confusion matrix

Results: Fraction of non-prompt J / ψ yield

- f_{B} is the fraction of the non-prompt production (Bhadron decays)
- f_{B} increases with increase in $p_{\mathrm{T}} \rightarrow$ The b-hadron production is favoured towards higher p_{T} compared to low p_{T}
- PYTHIA8 underestimates the experimental data following the similar trend
- Both XGB and LGBM overestimate PYTHIA8
- As this method does not require fitting, thus it can be used in both low and high statistics without affecting its efficiency

Results: Rapidity spectra

- Both XGB and LGBM give accurate predictions for rapidity spectra for inclusive and prompt-J/ ψ in pp collisions at $\sqrt{\mathrm{s}}=13 \mathrm{TeV}$ and 7 TeV
- The ML models overpredict the non-prompt J / ψ throughout rapidity region for both the collision energies

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

Results: Normalised J/ ψ yield

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

- The normalised yield for inclusive J/ ψ from PYTHIA8 matches qualitatively with the ALICE results
- Both XGB and LGBM reproduce the PYTHIA8 results very precisely for inclusive and prompt J/ ψ
- The predictions for non-prompt J / ψ from both XGB and LGBM matches PYTHIA8 findings within 10\% uncertainty

Summary

- We have used BDT based ML models such as XGBoost and LGBM to segregate the prompt, non-prompt and inclusive J / ψ production in pp collisions at $\sqrt{s}=13 \mathrm{TeV}$
- The models use the parameters, such as, pseudo-proper decay length ($c \tau$), invariant mass ($m_{\mu \mu}$), transverse momentum $\left(p_{T, \mu \mu}\right)$, pseudorapidity $\left(\eta_{\mu \mu}\right)$ of the dimuons as the input, which are accessible in the experiments
- The model almost achieves 99% overall accuracy
- The estimations for the prompt and inclusive J / ψ from the ML models match with the PYTHIA8 for the inclusive and prompt J/ ψ
- Using this models, track label identification is possible, and it avoids the necessity of fitting of spectra
- The model is expected to work throughout the energy regime from RHIC to LHC and in heavy-ion collisions

Thank you

for your attention

Backup

Strong Interaction

- Unlike QED, in QCD gluons have a color charge, which permits gluongluon interaction
- Color charges can't freely exist: Color confinement
- At high energies, α_{s} becomes smaller: Asymptotic freedom

Gradient Boosting Machine

- Trees are structures that take recursive decisions
- Built in a top-down approach
- Root node: The starting point

Internal nodes: further decision points
Leaf nodes: End points (target class or values)

- Criteria of splitting:

Classification: Minimise the node impurity
Regression: Minimise the MSE, MAE

- Splitting continues till a preset (max_depth)

MSE: Mean Squared Error MAE: Mean Absolute Error
 Leafwise splitting of tree, low memory use and supports parallel boosting

- Boosting: Building an additive forward staged model by combining the outcomes of all previous ones
- Boosting compensates the shortcomings
- Shortcomings are identified as the gradients

Gradient Boosting Machine

- Root Node: It is the topmost node in the tree, which represents the complete dataset. It is the starting point of the decisionmaking process.
- Decision/Internal Node: A node that symbolizes a choice regarding an input feature. Branching off of internal nodes connects them to leaf nodes or other internal nodes.
- Leaf/Terminal Node: A node without any child nodes that indicates a class label or a numerical value

- Two Methods for making an ensemble of decision trees: Boosting and bagging
- Bagging method builds models in parallel using a random subset of data (sampling with replacement) and aggregates predictions of all models
- Boosting method builds models in sequence using the whole data, with each model improving on the previous model's error
- Gradient Boosting: Gradient descent + boosting
- Gradient descent: Minima finding algorithm

XGBoost

LightGBM

- Extreme Gradient Boosting

- Faster and memory efficient compared to GBDT
- Supports CPU parallelization
- Light Gradient Boosting Machine

- Faster and very light in memory compared to GBDT and XGB
- Supports CPU and GPU parallelization

Corrections in the Predictions

$$
Y_{\mathrm{p}, \mathrm{i}}^{\mathrm{corr}}=\frac{Y_{\mathrm{p}, \mathrm{i}}^{\mathrm{uncorr}}}{1-\mathrm{f}}
$$

$Y_{\mathrm{np}, \mathrm{i}}^{\text {corr }}=Y_{\mathrm{np}, \mathrm{i}}^{\text {uncorr }}-\frac{\mathrm{f}}{1-\mathrm{f}} \frac{Y_{\mathrm{np}, \mathrm{i}}^{\text {uncorr }} Y_{\mathrm{p}}^{\text {uncorr }}}{Y_{\mathrm{np}}^{\text {uncorr }}}$

