Segregating inclusive, prompt and non-prompt production of J/ψ at the LHC energies using machine learning

Suraj Prasad Indian Institute of Technology Indore, India Email: Suraj.Prasad@cern.ch

Based On: S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

Outline

- Introduction
- Quarkonia
- Topological production of J/ ψ
- Inputs to the machine
- Model parameters
- Model performance
- Results
- Summary

Outline

- Introduction
- Quarkonia

Big Questions: What is the universe made of? How does it work? How did it evolve?

- woder performance
- Results
- Summary

Constituents of Matter

19-04-2024

Space-time evolution in Collider Experiments

Space-time evolution in Collider Experiments

https://particlesandfriends.wordpress.com/2016/10/14/evolution-of-collisions-and-qgp/

- There are two possible scenarios of the space-time evolution in collider experiments depending upon the system size and the collision energy
- One assumes the formation of a deconfined thermalised state of the deconfined quarks and gluons known as the quark-gluon plasma (QGP) led by the pre-equilibrium phase and followed by a mixed phase and hadron gas phase (larger system size and denser partonic medium)
- Another scenario involves the prehadronic phase followed by the hadron gas phase (small collision scenario)

19-04-2024

Coordinate System

- Azimuthal Angle, $\phi = \tan^{-1}\left(\frac{p_y}{p_x}\right)$
- Polar angle, $\theta = \tan^{-1}\left(\frac{p_T}{p_z}\right)$

- Pseudo-rapidity, $\eta = -\ln\left(\tan\frac{\theta}{2}\right)$
- Every produced particle is represented in terms of their ($p_{\rm T}$, η , ϕ)

[1] R. Sahoo, "Relativistic Kinematics", [arXiv:1604.02651 [nucl-ex]]

19-04-2024

Quarkonia

- Quarkonia is a bound state of heavy quark and antiquark pairs
- Due to its heavy mass, quarkonia studies in QGP are important as it experiences the whole medium evolution
- Serve as the testing ground for QCD

$$R_{\rm AA} = \frac{d^2 N_{\rm AA}/d\eta dp_{\rm T}}{\langle N_{\rm coll} \rangle \, d^2 N_{\rm pp}/d\eta dp_{\rm T}}$$

- Charmonia ($c\bar{c}$) and bottomonia ($b\bar{b}$)
- Suppression increased towards higher $\langle N_{part} \rangle$ due to the denser partonic medium: more screening

https://twiki.cern.ch/twiki/bin/view/ReteQuarkonii/ReteQuarkonii

Topological production of J/ ψ

- J/ ψ meson: Vector charmonium with lightest mass (3.096 GeV/ c^2)
- In experiments, dileptonic channels are used to reconstruct J/ ψ . (J/ $\psi \rightarrow \mu^+ + \mu^-$ or J/ $\psi \rightarrow e^+ + e^-$)
- Prompt Production: Direct production/ decay of heavier charmonium states
- Non-prompt Production: Products of beauty hadron weak decays (Opportunity to study b-hadron)
- Prompt and non-prompt J/ ψ are topologically different thus they both show different values of suppression

Experimental Procedure

- In experiments, the invariant mass of dilepton pairs are estimated: $M_{ee} = \sqrt{(E_1 + E_2)^2 (|\vec{p_1} + \vec{p_2}|)^2}$
- Using the vertexing information from the detectors, the pseudoproper decay length ($c\tau$) is estimated: $c\tau = \frac{c m_{J/\psi} \vec{L} \cdot \vec{p_T}}{|\vec{p_T}|^2}$
- One performs a simultaneous fit to the invariant mass signal and pseudoproper decay length to obtain fraction of nonprompt yield ($f_{\rm B}$)
- For the fitting, the PDFs for prompt and non-prompt are usually taken from MC simulations

19-04-2024

Machine Learning

"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed."

What it needs?

- Big data
- Smart algorithm (BDT, DNN, GNN etc.)
- Knowledge from data
- Tune the parameters (Optimise the model)
- Predict!!

19-04-2024

Preparing the inputs

- PYTHIA8 is used as the MC generator to generate 20 billion minimum bias ٠ events for pp collisions at $\sqrt{s} = 13$ TeV using 4C-tune
- The coordinates of the primary vertex are randomised following a Gaussian ٠ distribution
- $J/\psi \rightarrow \mu^+ + \mu^-$ channel is used to reconstruct invariant mass $(m_{\mu\mu})$, transverse momentum ($p_{T,\mu\mu}$), pseudorapidity ($\eta_{\mu\mu}$) and rapidity ($y_{\mu\mu}$) of the dimuons
- Pseudoproper decay length ($c\tau$) of the reconstructed dimuon pairs along <u>Data</u> MC with $m_{\mu\mu}$, $p_{T,\mu\mu}$, and $\eta_{\mu\mu}$ are taken as inputs $c\tau = \frac{c \ m_{\mathrm{J/\psi}} \ \vec{L} \ . \ \vec{p_{\mathrm{T}}}}{|\vec{p_{\mathrm{T}}}|^2}$ $\vec{L} = \vec{S} - \vec{V}$ \vec{V} = Primary Vertex \vec{S} = Reconstructed J/ ψ decay vertex

PYTHIA8

 $\rightarrow \times 0.47$

 $+\times 0.47$

→ × 1 00

pp, $\sqrt{s} = 13$ TeV, 2 < y < 4.5

Data

- → LHCb

-----LHCb

[nb/(GeV/c)]

 $\frac{d^2\sigma}{dy dp_T}$

10⁴

10

10

 10^{-1}

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

19-04-2024

Suraj Prasad | IIT Indore

10

 J/ψ - inclusive

 J/ψ - prompt

J/w - b-decav

Model parameters

- Background : Prompt : Non-prompt = 20 : 10 : 1
- Classification models required to be trained on similar number of training instances \rightarrow oversampling of data is done
- Dataset for Training : Testing : Validation = 81 : 10 : 9
- Parameters are chosen through a grid search method (Making an array of all possible parameters and training to find the parameter values for minimum loss)

	XGB	LGBM
Learning rate	0.3	0.1
Sub-sample	1.0	1.0
No. of trees	60	60
Maximum depth	3	3
Objective	softmax	softmax
Metric	mlogloss	multilogloss

Suraj Prasad | IIT Indore

of

top

No. of trees

XGB

Model performance

- Confusion Matrix talks about the mispredictions given by the model for each class
- Both XGB and LGBM perfectly separates the inclusive J/ ψ from the uncorrelated background pairs
- Both models mispredict 2% of prompt J/ ψ as the non-prompt \rightarrow Raises non-prompt yield

60

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

- Importance score tells how important a feature for a decision making of the models
- The importance score of invariant mass of dimuons is highest for both the models
- *cτ* contributes to decision making of the models significantly

Results: Transverse momentum spectra

- Both XGB and LGBM give accurate predictions for $p_{\rm T}$ -spectra for inclusive and prompt-J/ ψ both in mid and forward rapidity in pp collisions at $\sqrt{s} = 13$ TeV and 7 TeV S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)
- The ML models overpredict the non-prompt J/ ψ throughout the $p_{
 m T}$ spectra for both the collision energy and rapidity
 - \rightarrow Expected from the confusion matrix

19-04-2024

Results: Fraction of non-prompt J/ ψ yield

- $f_{\rm B}$ is the fraction of the non-prompt production (B-hadron decays)
- $f_{\rm B}$ increases with increase in $p_{\rm T}$ \rightarrow The b-hadron production is favoured towards higher $p_{\rm T}$ compared to low $p_{\rm T}$
- PYTHIA8 underestimates the experimental data following the similar trend
- Both XGB and LGBM overestimate PYTHIA8
- As this method does not require fitting, thus it can be used in both low and high statistics without affecting its efficiency

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

Results: Rapidity spectra

• The ML models overpredict the non-prompt J/ψ throughout rapidity region for both the collision energies

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

Results: Normalised J/ ψ yield

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

• The normalised yield for inclusive J/ψ from PYTHIA8 matches qualitatively with the ALICE results

Both XGB and LGBM reproduce the PYTHIA8 results very precisely for inclusive and prompt J/ ψ

• The predictions for non-prompt J/ ψ from both XGB and LGBM matches PYTHIA8 findings within 10% uncertainty

19-04-2024

Summary

- We have used BDT based ML models such as XGBoost and LGBM to segregate the prompt, non-prompt and inclusive J/ ψ production in pp collisions at $\sqrt{s} = 13$ TeV
- The models use the parameters, such as, pseudo-proper decay length ($c\tau$), invariant mass ($m_{\mu\mu}$), transverse momentum ($p_{T,\mu\mu}$), pseudorapidity ($\eta_{\mu\mu}$) of the dimuons as the input, which are accessible in the experiments
- The model almost achieves 99% overall accuracy
- The estimations for the prompt and inclusive J/ ψ from the ML models match with the PYTHIA8 for the inclusive and prompt J/ ψ
- Using this models, track label identification is possible, and it avoids the necessity of fitting of spectra
- The model is expected to work throughout the energy regime from RHIC to LHC and in heavy-ion collisions

S. Prasad, N. Mallick and R. Sahoo, Phys. Rev. D 109, 014005 (2024)

for your attention

Strong Interaction

- Unlike QED, in QCD gluons have a color charge, which permits gluongluon interaction
- Color charges can't freely exist: Color confinement
- At high energies, α_s becomes smaller: Asymptotic freedom

Obertelli, A., Sagawa, H. (2021). Nuclear Physics and Standard Model of Elementary Particles. In: Modern Nuclear Physics. UNITEXT for Physics. Springer, Singapore

19-04-2024

Gradient Boosting Machine

https://xgboost.readthedocs.io/en/stable/

https://lightgbm.readthedocs.io/en/stable/

- Trees are structures that take recursive decisions.
- Built in a top-down approach
- **Root node:** The starting point
- Internal nodes: further decision points
- **Leaf nodes:** End points (target class or values)
- Criteria of splitting:

Classification: Minimise the node impurity Regression: Minimise the MSE, MAE MSE: Mean Squared Error

- Splitting continues till a preset (max_depth)
- **Boosting:** Building an additive forward staged model by combining the outcomes of all previous ones
- Boosting compensates the shortcomings
- Shortcomings are identified as the gradients
- Extreme Gradient Boosting (XGB): Advance version of Gradient Boosting that supports parallel tree boosting \rightarrow Faster

Boosting • Light Gradient Machine (LGBM): Leafwise splitting of tree, low memory use and supports parallel boosting

19-04-2024

Gradient Boosting Machine

- **Root Node:** It is the topmost node in the tree, which represents the complete dataset. It is the starting point of the decision-making process.
- **Decision/Internal Node**: A node that symbolizes a choice regarding an input feature. Branching off of internal nodes connects them to leaf nodes or other internal nodes.
- Leaf/Terminal Node: A node without any child nodes that indicates a class label or a numerical value

19-04-2024

- Two Methods for making an ensemble of decision trees: Boosting and bagging
- **Bagging** method builds models in parallel using a random subset of data (sampling with replacement) and aggregates predictions of all models
- **Boosting** method builds models in sequence using the whole data, with each model improving on the previous model's error
- Gradient Boosting: Gradient descent + boosting
- Gradient descent: Minima finding algorithm

XGBoost

• Extreme Gradient Boosting

- Faster and memory efficient compared to GBDT
- Supports CPU parallelization

LightGBM

• Light Gradient Boosting Machine

- Faster and very light in memory compared to GBDT and XGB
- Supports CPU and GPU parallelization

19-04-2024

Corrections in the Predictions

19-04-2024