SEGMENTED STRINGS AND HOLOGRAPHY

Bercel Boldis^{1,2} Dr. Péter Pál Lévay²

¹HUN-REN Wigner Research Centre for Physics ²Budapest University of Technology and Economics 2024 Supported by the ÚNKP-23-3-I-BME-68 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE HUNGARY

Ministry of Culture and Innovation

HUN-REN Wigner Research Centre for Physics Budapest University of Technology and Economics 2024

Outline

- Introduction
- The AdS₃/CFT₂ correspondence
- The Ryu-Takayanagi formula
- Segmented strings in AdS₃
- Ryu-Takayanagi formula for segmented strings
- Correspondence in even dimensions
- Continuous limit
- Summary and outlook

Introduction

String theory on curved backround \uparrow

Field theory in Minkowski space

Original form: [Maldacena'97]

- IIB superstring theory on $AdS_5 \times S^5$
- $\mathcal{N} = 4$ supersymmetric Yang-Mills theory

Other aspect: [Ryu, Takayanagi'06] [Raamsdonk'10]

• Spacetime is built up of quantum entanglement

Introduction

AdS₃ space

 $\Lambda > 0$: de Sitter space

 $\Lambda < 0$: Anti-de Sitter (AdS) space

Einstein equations:

- In vacuum: $G_{\mu\nu} + \Lambda g_{\mu\nu} = 0$
- Cosmological constant: $\Lambda \leftarrow \Lambda = 0$: Minkowski space

AdS₃ space:

- Embedding space: $\mathbb{R}^{2,2}$
- 2+1 dimensional subset: AdS_3 space
- Metric:

$$ds^{2} = -(dX^{-1})^{2} - (dX^{0})^{2} + (dX^{1})^{2} + (dX^{2})^{2}$$

• Constraint:

 $X \cdot X = -(X^{-1})^2 - (X^0)^2 + (X^1)^2 + (X^2)^2 = -L^2$

Boundary of AdS₃ space:

•
$$\partial_{\infty}AdS_3 = \mathbb{P}\{U \in \mathbb{R}^{2,2} | U \cdot U = 0\}$$

AdS $\partial_{\infty}AdS$

AdS₃ space

Poincaré upper half-space model:

- 2 + 1 dimensional representation of the AdS_3 space
- Coordinates: (z, x^0, x^1)

$$(X^{-1}, X^{\mu}, X^{d}) = \left(\frac{-z^{2} - x^{2} - L^{2}}{2z}, \frac{Lx^{\mu}}{z}, \frac{-z^{2} - x^{2} + L^{2}}{2z}\right)$$

• Metric: $ds^{2} = L^{2} \frac{dz^{2} - (dx^{0})^{2} + (dx^{1})^{2}}{z^{2}}$
AdS
AdS
AdS
AdS
AdS
AdS
AdS

Boundary:

- $z \to 0 \Rightarrow$ Coordinates: (x^0, x^1)
- Metric: $ds^2 \propto -(dx^0)^2 + (dx^1)^2$
- Conformally equivalent to the 1+1 dimensional Minkowski space

The AdS/CFT correspondence

Conformal field theory:

- Quantum field theory
- With conformal invariance
- In d = 2: infinite-dimensional symmetry algebra
- Exactly solvable!

AdS₃/CFT₂ correspondence:

- $\partial_{\infty}AdS_3 \sim 1+1$ dimensional Minkowski space
- Conformal field theory on the boundary

Classical quantities (AdS_3) Field theoretical quantities (CFT_2)

$$Z_{grav}\left[\Phi\Big|_{\partial AdS}=J\right]=Z_{CFT}[J]$$

Entanglement in CFT₂

Von Neumann entropy:

- Statistical ensemble
- Density matrix ρ
- Von Neumann entropy: $S = -tr\{\rho \log \rho\}$
- Measures indeterminacy of the system

Entanglement in CFT₂:

- 1+1 dimensional CFT in vacuum state
- Observer that only has acces to a region A
- Measures different density matrix: $\rho_A = tr_{\bar{A}}\rho$
- Entanglement entropy: $S(A) = -tr\{\rho_A \log \rho_A\}$
- Measures the entanglement between A and \overline{A}

For an interval: [Calabrese, Cardy'18]

- Let *A* be an interval
- Length *R*
- *Note:* Cutoff dependent (δ)

$$S(A) = \frac{c}{3}\log\frac{R}{\delta}$$

HYSICS

c: central charge of CFT

Entanglement in CFT₂

Causal diamonds:

- Causal diamond = causality domain of a subsystem A
- Described by its past and future tips x^{μ} and y^{μ}
- Reduced density matrix: $\rho_A = e^{-H_A}$
- Where *H_A*: modular Hamiltonian

Kinematic space: [Boer'16]

- Space of causal diamonds (or subsystems) \rightarrow Coordinates: (x^{μ}, y^{ν})
- Coset structure: $\frac{SO(2,2)}{SO(1,1) \times SO(1,1)} \rightarrow$ Invariant metric: $\omega_{\mu\nu}$

Spherical minimal surfaces of AdS₃

Minimal surfaces of AdS₃:

- Two null vectors: $U, V \in \mathbb{R}^{2,2}$: $U \cdot U = V \cdot V = 0$
- Minimal surface= $\{X \mid U \cdot X = 0 \cap V \cdot X = 0\}$

In the Poincaré model:

- $U \cdot X = 0$ and $V \cdot X = 0 \rightarrow$ Two cones
- Tips of cones are on the boundary: x_u, x_v
- Minimal surface: One dimensional circular arc
- Image on the boundary: Interval, causal diamond

Area of minimal surfaces:

• Area: $A(U,V) = L \log \frac{4R^2}{\delta^2}$

• Where:
$$R^2 = -\frac{1}{4}(x_u - x_v) \cdot (x_u - x_v)$$

• Cutoff: $z > \delta$

Proportional to the entanglement entropy of the resulting boundary interval

2024.04.12.

$$x_{u}^{\mu} = L \frac{U^{\mu}}{U^{d} - U^{-1}}$$
$$x_{v}^{\nu} = L \frac{V^{\nu}}{V^{d} - V^{-1}}$$

 x_u

 $V \cdot X = 0$

 $U \cdot X = 0$

The Ryu-Takayanagi formula

The Ryu-Takayanagi formula: [Ryu, Takayanagi'06]

- *AdS*₃ space
- Vacuum CFT_2 on the boundary
- Brown-Henneaux formula: $c = \frac{3L}{2G}$ [Brown'86]
- An *A* spacelike *CFT* subsystem, border ∂A :
 - Entanglement entropy: $S(A) = -Tr\{\rho_A \log \rho_A\}$
- $\varepsilon_A AdS$ minimal surface, border ∂A :
 - Surface area: $A_{min}(A)$

$$S(A) = \frac{A_{min}(A)}{4G}$$

Ryu-Takayanagi formula

In our case:

- Image of minimal surface on the boundary: Interval
- Entanglement entropy: $S(U, V) = \frac{L}{4G} \log \frac{4R^2}{\delta^2}$

Classical strings in AdS₃

One dimensional classical strings:

- String: One dimensional object
- Propagation in spacetime: Two dimensional "worldsheet"
- Two parameters: (τ, σ) or (σ^+, σ^-)

• Action:
$$S = -\frac{T}{2} \int d\tau d\sigma \sqrt{-h} h^{ab} \partial_a X \cdot \partial_b X$$
 ~ Surface area

• $\delta S = 0$ { Equation of motion Virasoro constraints

Strings in AdS₃:

- Embedding space: AdS₃
- Equations of motion:

$$\partial_{+}\partial_{-}X - (\partial_{-}X \cdot \partial_{+}X)X = 0$$

$$\partial_{+}X \cdot \partial_{+}X = \partial_{-}X \cdot \partial_{-}X = 0$$

$$X \cdot X = -L^{2}$$

• Normal vector: $N_a = \frac{\epsilon_{abcd} X^b \partial_- X^c \partial_+ X^d}{\partial_- X \cdot \partial_+ X}$

Segmented strings in AdS space

Segmented strings: [Callebaut'15]

- Simplest solution: constant normal vector
- String segment: quadrangle with constant normal vector
- Segmented string: solution built up by segments
- Vertices: $V_i \cdot V_i = -L^2$, i = 1,2,3,4
- Edges: $p_i = \pm (V_i V_{i+1}), i = 1,2,3,4$ $p_i \cdot p_i = 0$

$$X(\sigma^{-},\sigma^{+}) = \frac{L^{2} + \sigma^{+}\sigma^{-}\frac{1}{2}p_{1} \cdot p_{4}}{L^{2} - \sigma^{+}\sigma^{-}\frac{1}{2}p_{1} \cdot p_{4}}V_{1} + L^{2}\frac{\sigma^{-}p_{1} + \sigma^{+}p_{4}}{L^{2} - \sigma^{+}\sigma^{-}\frac{1}{2}p_{1} \cdot p_{4}}$$

Area of a string segment:

• Evaluating the string action with the segmented solution

$$A_{::} = L^2 \log \frac{(p_1 \cdot p_4)(p_2 \cdot p_3)}{(p_1 \cdot p_2)(p_3 \cdot p_4)}$$

• *Note:* Cutoff independent!

15

Segmented strings and the boundary

Projection to the boundary:

- $p_i \cdot p_i = 0$!
- p_i define four cones in AdS via $p_i \cdot X = 0$
- At each vertex two edges meat
- Therefore each vertex lies on an intersection of a pair of cones
- Let: $x_i^{\mu} = L \frac{p_i^{\mu}}{p_i^d p_i^-}$
- Then (x_i^{μ}, x_j^{ν}) defines a causal diamond and a subsystem (ij)

Area of the string segment:

$$A_{::} = L^2 \log \frac{R_{14}^2 R_{23}^2}{R_{12}^2 R_{34}^2} = A_{14} + A_{23} - A_{34} - A_{12}$$

• Where:
$$R_{ij}^2 = -\frac{1}{4}(x_i - x_j)^2$$

Ryu-Takayanagi formula for segmented strings

Timelike segmented string:

- Edges: $p_i : p_i \cdot p_i = 0, i = 1, 2, 3, 4$
- For vertices: $p_i \cdot X = 0$
- Area: $A = L^2 \log \frac{R_{14}^2 R_{23}^2}{R_{12}^2 R_{34}^2}$

Spacelike minimal surfaces:

- Cones: $p_i \cdot X = 0$
- Their intersections: (14), (23), (12), (34) minimal surfaces
- Segment vertices lie on them!
- Their areas: $A(ij) = L \log \frac{4R_{ij}^2}{\delta^2}$

CFT vacuum subsystems:

- Images of minimal surfaces: (*ij*) subsystems
- Their entanglement entropies: $S(ij) = \frac{A(ij)}{4G}$

 $A \equiv 4GL(S(14) + S(23) - S(34) - S(12))$

Interpretation and consequences

Interpretation:

- CFT subsystems
- Flow of boundary causal diamonds

Interesting properties: Eg.:

- For a segment: $p_1 + p_2 = p_3 + p_4$
- On the boundary: causal diamonds lie on a common hyperbola
- Accelerating frame

Consequences: Eg.: strong subadditivity:

• Subsystems A, B, C

 $S(AB) + S(BC) - S(B) - S(ABC) \ge 0$

Strong subadditivity!

- Measuring on a larger subsystem reduces uncertainity
- $\exists A, B, C$ subsystems: $A_{\Box} \sim S(AB) + S(BC) S(B) S(ABC)$
- Geometrically: Positivity of segment area $A \ge 0$

Minimal surfaces in higher dimensions

Minimal surfaces of the AdS_{d+1} :

- Two null vectors: $U, V \in \mathbb{R}^{2,d}$: $U \cdot U = V \cdot V = 0$
- Minimal surface= $\{X \mid U \cdot X = 0 \cap V \cdot X = 0\}$

In the Poincaré model:

- $U \cdot X = 0$ and $V \cdot X = 0 \rightarrow$ Two cones
- Tips of the cones are on the boundary: x_u, x_v
- Minimal surface: d-1 dimensional sphere
- Image on the boundary: d-2 sphere, causal diamond

Area of minimal surfaces: [Ryu, Takayanagi'06]

• If
$$d = \text{even:} \quad A = \left(Powers \ of \frac{R}{\delta} \right) + \alpha \log \frac{R^2}{\delta^2}$$

• If
$$d = \text{odd}$$
 $A = \left(Powers \ of \frac{R}{\delta}\right)$

Correspondence in even dimensions

Ryu-Takayanagi proposal in higher dimensions:

- AdS_{d+1} space
- Boundary CFT_d in vacuum state
- A spacelike CFT subsystem with boundary ∂A
- $\varepsilon_A AdS$ minimal surface with boundary ∂A
- Entanglement entropy in general:

$S(A) = \frac{A_{min}(A)}{4G}$

Entropy in higher dimensions:

• $S = S^{\partial} + S^{uni} + S^{other}$

•
$$S \propto \frac{A(\partial A)}{\delta^{d-2}}$$

- If d = even: $S^{uni} \propto \log \frac{R}{\delta}$
- If d = odd: $S^{uni} = const$.

Segmented strings in higher dimensions

Strings in AdS_{d+1}:

- Embedding space: AdS_{d+1}
- Equations of motion:

Segmented strings:

- Vertices: $V_i \cdot V_i = -L^2$, i = 1,2,3,4
- Edges: $p_i = \pm (V_i V_{i+1}), i = 1,2,3,4$
- Same interpolation ansatz

Projection to the boundary:

• Let:
$$x_i^{\mu} = L \frac{p_i^{\mu}}{p_i^d - p_i^-}$$

Area of the string segment:

$$A_{::} = L^2 \log \frac{R_{14}^2 R_{23}^2}{R_{12}^2 R_{34}^2}$$

• Where:
$$R_{ij}^2 = -\frac{1}{4} (x_i - x_j)^2$$

$$\partial_{+}\partial_{-}X - (\partial_{-}X \cdot \partial_{+}X)X = 0$$

$$\partial_{+}X \cdot \partial_{+}X = \partial_{-}X \cdot \partial_{-}X = 0$$

$$X \cdot X = -L^{2}$$

Correspondence in even dimensions:

- d = even
- Edges: $p_i \leftrightarrow \text{Cones}$
- Vertices on minimal surfaces
- Minimal surfaces ↔ Spherical subsystems
- Area of segment \leftrightarrow Entanglement

$$A \sim (S^{uni}(14) + S^{uni}(23) - S^{uni}(34) - S^{uni}(12))$$

Continuous limit

Continuous limit:

- General AdS_{d+1} space
- Directional derivatives: ∂_X, ∂_X \rightarrow Virasoro constraints: $\partial_X, \partial_X = \partial_X \cdot \partial_X = 0$
- Poincaré coordinates: $x^{\mu} = L \frac{\partial_{-} X^{\mu}}{\partial_{-} X^{d} \partial_{-} X^{-1}}$, $y^{\mu} = \frac{\partial_{+} X^{\mu}}{\partial_{+} X^{d} \partial_{+} X^{-1}}$
- On the worldsheet: $\partial_X \cdot X = 0$, $\partial_+ X \cdot X = 0$ \rightarrow Causal diamond with tips x^{μ} , y^{μ}
- String action in causal diamond coordinates:

$$S = \int d\sigma^{-} d\sigma^{+} \sqrt{-h} h^{ab} \omega_{\mu\nu} \partial_{(a} x^{\mu} \partial_{b)} y^{\nu}$$

$$\downarrow$$

$$\omega_{\mu\nu} \equiv \text{Kinematic space metric}$$

$$\downarrow$$

$$\frac{SO(2,2)}{SO(1,1) \times SO(1,1)} \text{ invariant!}$$

Fidelity susceptibility

Infinitesimally close causal diamonds:

- Causal diamonds at (x^{μ}, y^{μ}) and $(x^{\mu} + \delta x^{\mu}, y^{\mu} + \delta y^{\mu})$
- Density matrices: ρ and $\rho + \delta \rho$
- Parallel purifications: ψ and $\psi + \delta \psi$ [Uhlmann'86]

Fidelity susceptibility and complexity:

- Overlap of states: $|\langle \psi | \psi + \delta \psi \rangle| = 1 \omega_{\mu\nu}^{FS} \delta x^{\mu} \delta y^{\nu} + \cdots$
- Where: $\omega_{\mu\nu}^{FS}$: fidelity susceptibility
- Kinematic space metric $\omega_{\mu\nu} \propto \omega_{\mu\nu}^{FS}$
- Where prefactors contain geometric factors and a_d^* trace anomaly

Û

Bulk string geometry ↔ Boundary quantum geometry

Summary

Summary:

- AdS_3/CFT_2 correspondence
- Ryu-Takayanagi formula → Connection between surfaces of segmented strings, areas of minimal surfaces and entanglement entropies of subsystems in CFT vacuum
- Geometry of classical strings \leftrightarrow Field theoretical entanglement
- Dictionary: Eg.:
 - \circ Positivity of area \leftrightarrow Strong subadditivity
- Duality for segmented strings in AdS_{d+1}/CFT_d , if d = even
- Continious limit \leftrightarrow Quantum geometry

Outlook:

- Entanglement as a glue?
- *CFT* excitations?
- Further entanglement inequalities?

THANK YOU FOR YOUR ATTENTION!

[B. Boldis, P. Lévay, Phys. Rev. D 109, 046002]

HUN-REN Wigner Research Centre for Physics Budapest University of Technology and Economics 2024

Summary

Summary:

- AdS_3/CFT_2 correspondence
- Ryu-Takayanagi formula → Connection between surfaces of segmented strings, areas of minimal surfaces and entanglement entropies of subsystems in CFT vacuum
- Geometry of classical strings \leftrightarrow Field theoretical entanglement
- Dictionary: Eg.:
 - \circ Positivity of area \leftrightarrow Strong subadditivity
- Duality for segmented strings in AdS_{d+1}/CFT_d , if d = even
- Continious limit \leftrightarrow Quantum geometry

Outlook:

- Entanglement as a glue?
- *CFT* excitations?
- Further entanglement inequalities?

